Multiplicate Particle Swarm Optimization Algorithm

被引:2
|
作者
Gao, Shang [1 ]
Zhang, Zaiyue [1 ]
Cao, Cungen [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Engn & Comp Sci, Zhenjiang 212003, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing 100080, Peoples R China
关键词
particle swarm optimization algorithm; convergence; parameter;
D O I
10.4304/jcp.5.1.150-157
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Using Particle Swarm Optimization to handle complex functions with high-dimension it has the problems of low convergence speed and sensitivity to local convergence. The convergence of particle swarm algorithm is studied, and the condition for the convergence of particle swarm algorithm is given. Results of numerical tests show the efficiency of the results. Base on the idea of specialization and cooperation of particle swarm optimization algorithm, a multiplicate particle swarm optimization algorithm is proposed. In the new algorithm, particles use five different hybrid flight rules in accordance with section probability. This algorithm can draw on each other ' s merits and raise the level together The method uses not only local information but also global information and combines the local search with the global search to improve its convergence. The efficiency of the new algorithm is verified by the simulation results of five classical test functions and the comparison with other algorithms. The optimal section probability can get through sufficient experiments, which are done on the different section probability in the algorithms.
引用
收藏
页码:150 / 157
页数:8
相关论文
共 50 条
  • [1] An Improved Particle Swarm Optimization Algorithm
    Jiang, Changyuan
    Zhao, Shuguang
    Guo, Lizheng
    Ji, Chuan
    MECHANICAL ENGINEERING AND INTELLIGENT SYSTEMS, PTS 1 AND 2, 2012, 195-196 : 1060 - 1065
  • [2] An adaptive particle swarm optimization algorithm for reservoir operation optimization
    Zhang, Zhongbo
    Jiang, Yunzhong
    Zhang, Shuanghu
    Geng, Simin
    Wang, Hao
    Sang, Guoqing
    APPLIED SOFT COMPUTING, 2014, 18 : 167 - 177
  • [3] An Improved Particle Swarm Optimization Algorithm
    Ni, Hongmei
    Wang, Weigang
    ADVANCES IN APPLIED SCIENCES AND MANUFACTURING, PTS 1 AND 2, 2014, 850-851 : 809 - +
  • [4] A parallel particle swarm optimization algorithm
    Ma, Yan
    Sun, Jun
    Xu, Wenbo
    DCABES 2006 PROCEEDINGS, VOLS 1 AND 2, 2006, : 61 - 64
  • [5] Center Particle Swarm Optimization Algorithm
    Yang Xiaojing
    Jiao Qingju
    Liu Xinke
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 2084 - 2087
  • [6] An Improved Particle Swarm Optimization Algorithm
    Pan, Dazhi
    Liu, Zhibin
    EMERGING RESEARCH IN ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, 2011, 237 : 550 - +
  • [7] A modification to particle swarm optimization algorithm
    Fan, HY
    ENGINEERING COMPUTATIONS, 2002, 19 (7-8) : 970 - 989
  • [8] A modified Particle Swarm Optimization algorithm
    Liu Yitong
    Fu Mengyin
    Gao Hongbin
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 3, 2007, : 479 - +
  • [9] Particle swarm optimization algorithm: an overview
    Wang, Dongshu
    Tan, Dapei
    Liu, Lei
    SOFT COMPUTING, 2018, 22 (02) : 387 - 408
  • [10] Hybridizing salp swarm algorithm with particle swarm optimization algorithm for recent optimization functions
    Narinder Singh
    S. B. Singh
    Essam H. Houssein
    Evolutionary Intelligence, 2022, 15 : 23 - 56