ADDITIVE NOISE TURNS A HYPERBOLIC FIXED-POINT INTO A STATIONARY SOLUTION

被引:0
作者
ARNOLD, L
BOXLER, P
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose (*) x = A(theta(t)omega)x is hyperbolic, i.e. all of its Lyapunov exponents are different from zero. Then x = A(theta(t)omega)x + f(theta(t)omega), x) + b(theta(t)omega) with f(omega,.) locally Lipschitz and f (omega, 0) = 0 has a (unique) stationary solution in a neighborhood of x = 0 provided f and b are 'small'. 'Smallness' is being described in terms of a random norm measuring the non-uniformity of the hyperbolicity of (*).
引用
收藏
页码:159 / 164
页数:6
相关论文
共 9 条
[1]  
[Anonymous], 1988, DYNAMICS REPORTED, DOI DOI 10.1007/978-3-322-96656-8_5
[2]  
ARNOLD L, 1991, STOCHASTIC FLOWS
[3]   A STOCHASTIC VERSION OF CENTER MANIFOLD THEORY [J].
BOXLER, P .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 83 (04) :509-545
[4]  
BUNKE H, 1972, GEWOHNLICHE DIFFEREN
[5]  
Coppel W., 1965, HEATH MATH MONOGRAPH
[6]  
Hale J.K., 1969, ORDINARY DIFFERENTIA, VXXI, P332
[7]  
Has'minskii RZ., 1980, STOCHASTIC STABILITY
[8]   MELNIKOV TRANSFORMS, BERNOULLI BUNDLES, AND ALMOST PERIODIC PERTURBATIONS [J].
MEYER, KR ;
SELL, GR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 314 (01) :63-105
[9]   CHAOTIC SOLUTIONS OF SYSTEMS WITH ALMOST PERIODIC FORCING [J].
SCHEURLE, J .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1986, 37 (01) :12-26