SHORTEST PATHS IN THE PLANE WITH CONVEX POLYGONAL OBSTACLES

被引:76
作者
ROHNERT, H
机构
[1] Univ of Saarbruecken, Saarbruecken, West Ger, Univ of Saarbruecken, Saarbruecken, West Ger
关键词
MATHEMATICAL TECHNIQUES - Geometry;
D O I
10.1016/0020-0190(86)90045-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An algorithm is presented which computers shortest paths in the Euclidean plane that do not cross given obstacles. The set of obstacles is assumed to consist of f disjoint convex polygons with n vertices in total. After preprocessing time O(n plus f**2log n), the shortest path between two arbitrary query points can be found in O(f**2 plus n log n) time. The space complexity is O(n plus f**2).
引用
收藏
页码:71 / 76
页数:6
相关论文
共 4 条
[1]   COMPUTING THE EXTREME DISTANCES BETWEEN 2 CONVEX POLYGONS [J].
EDELSBRUNNER, H .
JOURNAL OF ALGORITHMS, 1985, 6 (02) :213-224
[2]  
Fredman M. L., 1984, 25th Annual Symposium on Foundations of Computer Science (Cat. No. 84CH2085-9), P338, DOI 10.1109/SFCS.1984.715934
[3]  
MEHLHORN K, 1984, DATA STRUCTURES ALGO, V3, P98
[4]   AN ALGORITHM FOR SHORTEST-PATH MOTION IN 3 DIMENSIONS [J].
PAPADIMITRIOU, CH .
INFORMATION PROCESSING LETTERS, 1985, 20 (05) :259-263