A DIVIDE-AND-CONQUER ALGORITHM FOR THE SYMMETRICAL TRIDIAGONAL EIGENPROBLEM

被引:147
作者
GU, M
EISENSTAT, SC
机构
[1] UNIV CALIF BERKELEY,LAWRENCE BERKELEY LAB,BERKELEY,CA 94720
[2] YALE UNIV,DEPT COMP SCI,NEW HAVEN,CT 06520
关键词
SYMMETRICAL TRIDIAGONAL EIGENPROBLEM; DIVIDE-AND-CONQUER; ARROWHEAD MATRIX;
D O I
10.1137/S0895479892241287
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors present a stable and efficient divide-and-conquer algorithm for computing the spectral decomposition of an N x N symmetric tridiagonal matrix. The key elements are a new, stable method for finding the spectral decomposition of a symmetric arrowhead matrix and a new implementation of deflation. Numerical results show that this algorithm is competitive with bisection with inverse iteration, Cuppen's divide-and-conquer algorithm, and the QR algorithm for solving the symmetric tridiagonal eigenproblem.
引用
收藏
页码:172 / 191
页数:20
相关论文
共 30 条
[21]  
JESSUP E, 1989, THESIS YALE U NEW HA
[22]   IMPROVING THE ACCURACY OF INVERSE ITERATION [J].
JESSUP, ER ;
IPSEN, ICF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (02) :550-572
[23]   A CASE AGAINST A DIVIDE-AND-CONQUER APPROACH TO THE NONSYMMETRIC EIGENVALUE PROBLEM [J].
JESSUP, ER .
APPLIED NUMERICAL MATHEMATICS, 1993, 12 (05) :403-420
[24]  
KAHAN W, 1989, UNPUB RANK 1 PERTURB
[25]  
LI RC, 1992, SOLVING SECULAR EQUA
[26]   COMPUTING THE EIGENVALUES AND EIGENVECTORS OF SYMMETRICAL ARROWHEAD MATRICES [J].
OLEARY, DP ;
STEWART, GW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 90 (02) :497-505
[27]   THE USE OF A REFINED ERROR BOUND WHEN UPDATING EIGENVALUES OF TRIDIAGONALS [J].
PARLETT, BN ;
NOUROMID, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 68 (JUL) :179-219
[28]  
SHREVE WE, 1987, CURRENT TRENDS MATRI, P339
[29]   ON THE ORTHOGONALITY OF EIGENVECTORS COMPUTED BY DIVIDE-AND-CONQUER TECHNIQUES [J].
SORENSEN, DC ;
PING, TPT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (06) :1752-1775
[30]  
Wilkinson JH., 1988, ALGEBRAIC EIGENVALUE