RINGS IN WHICH EVERY COMPLEMENT RIGHT IDEAL IS A DIRECT SUMMAND

被引:73
作者
CHATTERS, AW
HAJARNAVIS, CR
机构
[1] UNIV BRISTOL,SCH MATH,BRISTOL BS8 1TW,ENGLAND
[2] UNIV WARWICK,INST MATH,COVENTRY CV4 7AL,WARWICKSHIRE,ENGLAND
关键词
D O I
10.1093/qmath/28.1.61
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:61 / 80
页数:20
相关论文
共 26 条
[1]  
BASS H, 1960, T AM MATH SOC, V95, P466, DOI 10.1090/S0002-9947-1960-0157984-8
[2]   2-SIDED SEMISIMPLE MAXIMAL QUOTIENT RINGS [J].
CATEFORIS, VC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 149 (01) :339-+
[3]  
Chase S.U., 1961, NAGOYA MATH J, V18, P13, DOI 10.1017/S0027763000002208
[4]   QF-3 RINGS WITH ZERO SINGULAR IDEAL [J].
COLBY, RR ;
RUTTER, EA .
PACIFIC JOURNAL OF MATHEMATICS, 1969, 28 (02) :303-&
[5]   STRUCTURE OF CERTAIN ARTINIAN RINGS WITH ZERO SINGULAR IDEAL [J].
COLBY, RR ;
RUTTER, EA .
JOURNAL OF ALGEBRA, 1968, 8 (02) :156-&
[6]   DIRECT-SUM REPRESENTATIONS OF INJECTIVE MODULES [J].
FAITH, C ;
WALKER, EA .
JOURNAL OF ALGEBRA, 1967, 5 (02) :203-&
[7]  
Goldie A. W., 1964, J ALGEBRA, V1, P268
[8]   RINGS FAITHFULLY REPRESENTED ON THEIR LEFT SOCLE [J].
GORDON, R .
JOURNAL OF ALGEBRA, 1967, 7 (03) :303-&
[9]   PIECEWISE DOMAINS [J].
GORDON, R ;
SMALL, LW .
JOURNAL OF ALGEBRA, 1972, 23 (03) :553-&
[10]   RINGS IN WHICH MINIMAL LEFT IDEALS ARE PROJECTIVE [J].
GORDON, R .
PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (03) :679-&