ALGEBRAIC PERRON-FROBENIUS THEORY

被引:40
作者
BARKER, GP
SCHNEIDER, H
机构
[1] UNIV MISSOURI,DEPT MATH,KANSAS CITY,MO 64110
[2] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
关键词
D O I
10.1016/0024-3795(75)90022-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:219 / 233
页数:15
相关论文
共 38 条
[31]   SIMPLE APPROACH TO PERRON-FROBENIUS THEORY FOR POSITIVE OPERATORS ON GENERAL PARTIALLY-ORDERED FINITE-DIMENSIONAL LINEAR SPACES [J].
RHEINBOLDT, WC ;
VANDERGRAFT, JS .
MATHEMATICS OF COMPUTATION, 1973, 27 (121) :139-145
[32]  
Rockafellar RT., 1970, CONVEX ANAL, DOI [10.1515/9781400873173, DOI 10.1515/9781400873173]
[33]  
Sawashima I., 1964, NATUR SCI REP OCHANO, V15, P53
[34]  
Schaefer H. H., 1971, GRAD TEXTS MATH, V3
[35]  
Stoer J., 1970, CONVEXITY OPTIMIZATI
[36]  
Vandergraft JS., 1967, SIAM J NUM ANAL, V4, P406, DOI DOI 10.1137/0704037
[37]  
Wielandt H., 1950, MATH Z, V52, P642, DOI 10.1007/BF02230720
[38]  
Zariski O., 1958, COMMUTATIVE ALGEBRA