Vector norm inequalities for power series of operators in Hilbert spaces

被引:2
作者
Chenung, W. S. [1 ]
Dragomir, S. S. [2 ,3 ]
机构
[1] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] Victoria Univ, Sch Engn & Sci, Math, Melbourne, Vic 8001, Australia
[3] Univ Witwatersrand, Sch Computat & Applied Math, ZA-2050 Johannesburg, South Africa
来源
TBILISI MATHEMATICAL JOURNAL | 2014年 / 7卷 / 02期
关键词
Bounded linear operators; Hilbert spaces; Functions of operators; Power series; Hermite-Hadamard type inequalities;
D O I
10.2478/tmj-2014-0013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, vector norm inequalities that provides upper bounds for the Lipschitz quantity parallel to f (T) x - f (V) x parallel to for power series f(z) = Sigma(infinity)(n=0) a(n)z(n), bounded linear operators T,V on the Hilbert space H and vectors x epsilon H are established. Applications in relation to Hermite-Hadamard type inequalities and examples for elementary functions of interest are given as well.
引用
收藏
页码:21 / 34
页数:14
相关论文
共 50 条
  • [41] Separability for Positive Operators on Tensor Product of Hilbert Spaces
    Jin Chuan Hou
    Jin Fei Chai
    Acta Mathematica Sinica, English Series, 2021, 37 : 893 - 910
  • [42] Power series of the operators
    Gonska, Heiner
    Rasa, Ioan
    Stanila, Elena Dorina
    POSITIVITY, 2015, 19 (02) : 237 - 249
  • [43] Spectrum perturbations of operators on tensor products of Hilbert spaces
    Gil, MI
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2004, 43 (04): : 719 - 735
  • [44] Compact operators on non-classical Hilbert spaces
    Ochsenius, H
    Schikhof, WH
    ULTRAMETRIC FUNCTIONAL ANALYSIS, 2003, 319 : 239 - 249
  • [45] Regular Functions of Operators on Tensor Products of Hilbert Spaces
    M. I. Gil’
    Integral Equations and Operator Theory, 2006, 54 : 317 - 331
  • [46] Adjoints of composition operators on Hilbert spaces of analytic functions
    Martin, Maria J.
    Vukotic, Dragan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (01) : 298 - 312
  • [47] Separability for Positive Operators on Tensor Product of Hilbert Spaces
    Hou, Jin Chuan
    Chai, Jin Fei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (06) : 893 - 910
  • [48] ESSENTIAL NORM OF THE COMPOSITION OPERATORS ON THE GENERAL SPACES Hω,p OF HARDY SPACES
    Rezaei, S.
    ANNALS OF FUNCTIONAL ANALYSIS, 2018, 9 (02): : 180 - 189
  • [49] Symmetric multilinear forms on Hilbert spaces: Where do they attain their norm?
    Carando, Daniel
    Tomas Rodriguez, Jorge
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 563 : 178 - 192