Vector norm inequalities for power series of operators in Hilbert spaces

被引:2
作者
Chenung, W. S. [1 ]
Dragomir, S. S. [2 ,3 ]
机构
[1] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] Victoria Univ, Sch Engn & Sci, Math, Melbourne, Vic 8001, Australia
[3] Univ Witwatersrand, Sch Computat & Applied Math, ZA-2050 Johannesburg, South Africa
来源
TBILISI MATHEMATICAL JOURNAL | 2014年 / 7卷 / 02期
关键词
Bounded linear operators; Hilbert spaces; Functions of operators; Power series; Hermite-Hadamard type inequalities;
D O I
10.2478/tmj-2014-0013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, vector norm inequalities that provides upper bounds for the Lipschitz quantity parallel to f (T) x - f (V) x parallel to for power series f(z) = Sigma(infinity)(n=0) a(n)z(n), bounded linear operators T,V on the Hilbert space H and vectors x epsilon H are established. Applications in relation to Hermite-Hadamard type inequalities and examples for elementary functions of interest are given as well.
引用
收藏
页码:21 / 34
页数:14
相关论文
共 50 条
  • [31] Norm Hilbert spaces over Krull valued fields
    Ochsenius, H.
    Schikhof, W. H.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2006, 17 (01): : 65 - 84
  • [32] On properties of Crawford numbers of operators on Hilbert spaces
    Deepesh, K. P.
    Shameem, Mohammed
    Sreelakshmi, M. P.
    ACTA SCIENTIARUM MATHEMATICARUM, 2024,
  • [33] Hilbert Spaces of Entire Functions and Composition Operators
    Doan, Minh Luan
    Khoi, Le Hai
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (01) : 213 - 230
  • [34] Hilbert Spaces of Entire Functions and Composition Operators
    Minh Luan Doan
    Le Hai Khoi
    Complex Analysis and Operator Theory, 2016, 10 : 213 - 230
  • [35] Strictly singular operators and isomorphisms of Cartesian products of power series spaces
    Djakov, PB
    Onal, S
    Terzioglu, T
    Yurdakul, M
    ARCHIV DER MATHEMATIK, 1998, 70 (01) : 57 - 65
  • [36] Strictly singular operators and isomorphisms of Cartesian products of power series spaces
    Plamen Borissov Djakov
    Süleyman Önal
    Murat Yurdakul
    Tosun Terzioğlu
    Archiv der Mathematik, 1998, 70 : 57 - 65
  • [37] Iterative method with inertial for variational inequalities in Hilbert spaces
    Yekini Shehu
    Prasit Cholamjiak
    Calcolo, 2019, 56
  • [38] Iterative method with inertial for variational inequalities in Hilbert spaces
    Shehu, Yekini
    Cholamjiak, Prasit
    CALCOLO, 2019, 56 (01)
  • [39] NORM RETRIEVAL BY PROJECTIONS ON INFINITE-DIMENSIONAL HILBERT SPACES
    Yan Zhou
    AnnalsofAppliedMathematics, 2017, 33 (03) : 324 - 330
  • [40] Regular functions of operators on tensor products of Hilbert spaces
    Gil, MI
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 54 (03) : 317 - 331