NECESSARY CONDITIONS FOR INFINITE-DIMENSIONAL CONTROL-PROBLEMS

被引:25
作者
FATTORINI, HO [1 ]
FRANKOWSKA, H [1 ]
机构
[1] UNIV PARIS 09,CEREMADE,F-75576 PARIS 16,FRANCE
关键词
LAGRANGE MULTIPLIER RULE; KUHN-TUCKER CONDITIONS; MAXIMUM PRINCIPLE; OPTIMAL CONTROLS; APPROXIMATELY OPTIMAL CONTROLS;
D O I
10.1007/BF02551380
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider infinite-dimensional nonlinear programming problems which consist of minimizing a function-closed-integral-0(u) under a target set constraint. We obtain necessary conditions for minima that reduce to the Kuhn-Tucker conditions in the finite-dimensional case. Among other applications of these necessary conditions and related results, we derive Pontryagin's maximum principle for a class of control systems described by semilinear equations in Hilbert space and study convergence properties of sequences of near-optimal controls for these systems.
引用
收藏
页码:41 / 67
页数:27
相关论文
共 17 条
[1]  
[Anonymous], 2016, LINEAR NONLINEAR PRO
[2]  
AUBIN JP, 1984, APPLIED NONLINEAR AN
[3]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[4]   MAXIMUM PRINCIPLE UNDER MINIMAL HYPOTHESES [J].
CLARKE, FH .
SIAM JOURNAL ON CONTROL, 1976, 14 (06) :1078-1091
[5]  
EKELAND I, 1972, CR ACAD SCI A MATH, V275, P1057
[6]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474
[7]  
FATTORINI HO, 1987, LECT NOTES CONTR INF, V97, P230
[8]  
FATTORINI HO, 1989, INT S NUM M, V91, P123
[9]   A UNIFIED THEORY OF NECESSARY CONDITIONS FOR NONLINEAR NONCONVEX CONTROL-SYSTEMS [J].
FATTORINI, HO .
APPLIED MATHEMATICS AND OPTIMIZATION, 1987, 15 (02) :141-185
[10]  
FATTORINI HO, 1988, SOFTWARE OPTIMIZATIO, P359