ON FORMAL SOLUTIONS TO THE SCHRODINGER-EQUATION

被引:2
作者
OMOTE, M [1 ]
KAMEFUCHI, S [1 ]
机构
[1] NIHON UNIV,ATOM ENERGY RES INST,CHIYODA KU,TOKYO 101,JAPAN
关键词
D O I
10.1016/0375-9601(95)00618-D
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Formal solutions to the Schrodinger equation with the Hamiltonian H(t) being, in general, time-dependent are expressed in terms of eigenstates of a time-dependent operator Lambda(t). The resulting formulae take simple forms when A(t) is chosen to be a conserved quantity G(t), i.e., one satisfying i partial derivative G(t)/partial derivative t - [H(t), G(t>] = 0.
引用
收藏
页码:273 / 278
页数:6
相关论文
共 9 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE [J].
ANANDAN, J .
PHYSICS LETTERS A, 1988, 133 (4-5) :171-175
[3]   DEVIATION FROM BERRY ADIABATIC GEOMETRIC PHASE IN A XE-131 NUCLEAR GYROSCOPE [J].
APPELT, S ;
WACKERLE, G ;
MEHRING, M .
PHYSICAL REVIEW LETTERS, 1994, 72 (25) :3921-3924
[5]  
COLEGRAVE RK, 1983, J PHYS A, V16, P3803
[6]   1ST INTEGRALS FOR SOME NONLINEAR TIME-DEPENDENT HAMILTONIAN-SYSTEMS [J].
LEACH, PGL ;
LEWIS, HR ;
SARLET, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (03) :486-490
[7]  
LEACH PGL, 1977, J MATH PHYS, V18, P1902, DOI 10.1063/1.523161
[8]   AN EXACT QUANTUM THEORY OF TIME-DEPENDENT HARMONIC OSCILLATOR AND OF A CHARGED PARTICLE IN A TIME-DEPENDENT ELECTROMAGNETIC FIELD [J].
LEWIS, HR ;
RIESENFELD, WB .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (08) :1458-+
[9]   APPEARANCE OF GAUGE STRUCTURE IN SIMPLE DYNAMICAL-SYSTEMS [J].
WILCZEK, F ;
ZEE, A .
PHYSICAL REVIEW LETTERS, 1984, 52 (24) :2111-2114