METABOLIC MODELING;
BIOREACTOR OPTIMIZATION;
RECOMBINANT PROTEIN SYNTHESIS;
INDUCTION DYNAMICS;
D O I:
10.1002/bit.260380709
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
The dynamics of chemically induced chloramphenicol-acetyl-transferase (CAT) expression are determined in batch cultures of Escherichia coli DH5-alpha-F'lQ [pKK262-1]. This article is directed towards understanding the coupling of induced cloned-protein synthesis and reduced cell growth which are balanced in the optimal system. Experimental results indicate that the best inducer (IPTG) concentration is near 1.0 mM when added during midexponential growth. Lower concentrations cause only weak induction, whereas higher concentrations cause sufficiently strong induction that cell growth is suppressed. Induction at the onset of the stationary phase results in high expression but is accompanied by stimulated protease activity. Also, cell mass yield is adversely affected by enhanced protein synthesis. A structured metabolic model is shown to predict the responses of instantaneous growth rate and productivity which result from protein overexpression. This model can be employed to predict alternative reactor strategies and operating conditions necessary for the design of efficient bioprocesses.