HARMONIC ANALYSIS AND UNCERTAINTY PRINCIPLES FOR INTEGRAL TRANSFORMS GENERALIZING THE SPHERICAL MEAN OPERATOR

被引:0
作者
Hleili, Khaled [1 ]
Omri, Slim [2 ]
Rachdi, Lakhdar Tannech [3 ]
机构
[1] Inst Appl Sci & Technol Tunis, Ctr Urbain Nord, Dept Math & Informat, BP 676, Tunis 1080, Tunisia
[2] Campus Univ, Preparatory Inst Engn Study, Nambeul 80000, Tunisia
[3] Fac Sci Tunis, Dept Math, Tunis, Tunisia
来源
BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 2012年 / 4卷 / 01期
关键词
Integral transform; Fourier transform; Inversion formula; Uncertainty principles;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For m,n is an element of N; m <= n >= 1, we define an integral transform R-m,R-n, that generalizes the spherical mean operator. We establish many harmonic analysis results for the Fourier transform p(m,n) connected with R-m,R-n. Next, we establish inversion formulas for the operator R-m,R-n and its dual (t) R-m,R-n. Finally, we prove some uncertainty principles related to the Fourier transform P-m,P-n
引用
收藏
页码:29 / 61
页数:33
相关论文
共 26 条
[11]   The uncertainty principle: A mathematical survey [J].
Folland, GB ;
Sitaram, A .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (03) :207-238
[12]  
Havin V., 2012, UNCERTAINTY PRINCIPL
[13]   AN INVERSE METHOD FOR THE PROCESSING OF SYNTHETIC APERTURE RADAR DATA [J].
HELLSTEN, H ;
ANDERSSON, LE .
INVERSE PROBLEMS, 1987, 3 (01) :111-124
[14]  
Herberthson M., 1986, D3043032 NAT DEF RES
[15]  
Hleili K., 2011, CUBO, V13
[16]  
Jelassi M., 2004, FRACT CALC APPL ANAL, V7, P379
[17]  
Lebedev N.N., 1972, SPECIAL FUNCTIONS TH
[18]  
Morgan G. W., 1934, J LOND MATH SOC, V9, P178
[19]  
Msehli N., 2009, J INEQUAL PURE APPL, V10
[20]   Ranges and inversion formulas for spherical mean operator and its dual [J].
Nessibi, MM ;
Rachdi, LT ;
Trimeche, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 196 (03) :861-884