HARMONIC ANALYSIS AND UNCERTAINTY PRINCIPLES FOR INTEGRAL TRANSFORMS GENERALIZING THE SPHERICAL MEAN OPERATOR

被引:0
作者
Hleili, Khaled [1 ]
Omri, Slim [2 ]
Rachdi, Lakhdar Tannech [3 ]
机构
[1] Inst Appl Sci & Technol Tunis, Ctr Urbain Nord, Dept Math & Informat, BP 676, Tunis 1080, Tunisia
[2] Campus Univ, Preparatory Inst Engn Study, Nambeul 80000, Tunisia
[3] Fac Sci Tunis, Dept Math, Tunis, Tunisia
来源
BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 2012年 / 4卷 / 01期
关键词
Integral transform; Fourier transform; Inversion formula; Uncertainty principles;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For m,n is an element of N; m <= n >= 1, we define an integral transform R-m,R-n, that generalizes the spherical mean operator. We establish many harmonic analysis results for the Fourier transform p(m,n) connected with R-m,R-n. Next, we establish inversion formulas for the operator R-m,R-n and its dual (t) R-m,R-n. Finally, we prove some uncertainty principles related to the Fourier transform P-m,P-n
引用
收藏
页码:29 / 61
页数:33
相关论文
共 26 条
[1]  
Andrews G.E., 1999, SPECIAL FUNCTIONS
[2]  
Baccar C., 2006, INT J MATH MATH SCI, V2006, P1
[3]   Fock Spaces Connected with Spherical Mean Operator and Associated Operators [J].
Baccar, Cyrine ;
Omri, Slim ;
Rachdi, Lakhdar T. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2009, 6 (01) :1-25
[4]  
Bonami A, 2003, REV MAT IBEROAM, V19, P23
[5]  
Courant R., 1962, PARTIAL DIFFERENTIAL, VII
[6]  
COWLING M, 1983, LECT NOTES MATH, V992, P443
[7]  
Dziri M., 2005, INT J MATH MATH SCI, V2005, P357, DOI DOI 10.1155/IJMMS.2005.357
[8]  
Erdely A., 1956, ASYMPTOTIC EXPANSION
[9]  
Erdely A, 1954, TABLES INTEGRAL TRAN
[10]   INVERSION OF N-DIMENSIONAL SPHERICAL AVERAGES [J].
FAWCETT, JA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1985, 45 (02) :336-341