PERSISTENCE AND EXTINCTION IN SINGLE-SPECIES REACTION-DIFFUSION MODELS

被引:65
作者
ALLEN, LJS
机构
关键词
D O I
10.1007/BF02462357
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:209 / 227
页数:19
相关论文
共 29 条
[1]   APPLICATION OF THE INVARIANCE PRINCIPLE TO REACTION-DIFFUSION EQUATIONS [J].
ALIKAKOS, ND .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 33 (02) :201-225
[2]  
Allen L. J., 1981, THESIS U TENNESSEE K
[3]  
Coddington EA., 1955, THEORY ORDINARY DIFF
[4]   GLOBAL STABILITY IN MANY-SPECIES SYSTEMS [J].
GOH, BS .
AMERICAN NATURALIST, 1977, 111 (977) :135-143
[5]   NONEXISTENCE OF PERIODIC-SOLUTIONS OF THE REACTIVE-DIFFUSIVE VOLTERRA SYSTEM OF EQUATIONS [J].
GOPALSAMY, K ;
AGGARWALA, BD .
JOURNAL OF THEORETICAL BIOLOGY, 1980, 82 (03) :537-540
[6]   REGULATION OF INHOMOGENEOUS POPULATIONS [J].
GURNEY, WSC ;
NISBET, RM .
JOURNAL OF THEORETICAL BIOLOGY, 1975, 52 (02) :441-457
[7]   DIFFUSION OF BIOLOGICAL POPULATIONS [J].
GURTIN, ME ;
MACCAMY, RC .
MATHEMATICAL BIOSCIENCES, 1977, 33 (1-2) :35-49
[8]  
HASTINGS A, 1978, J MATH BIOL, V6, P163, DOI 10.1007/BF02450786
[9]   LIAPUNOV STABILITY OF DIFFUSIVE LOTKA-VOLTERRA EQUATIONS [J].
JORNE, J ;
CARMI, S .
MATHEMATICAL BIOSCIENCES, 1977, 37 (1-2) :51-61
[10]   LINEAR AND NONLINEAR DIFFUSION-MODELS APPLIED TO THE BEHAVIOR OF A POPULATION OF AN INTER-TIDAL SNAIL [J].
JORNE, J ;
SAFRIEL, UN .
JOURNAL OF THEORETICAL BIOLOGY, 1979, 79 (03) :367-380