ON NONLOCAL PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES

被引:20
作者
Dong, XiWang [1 ]
Wang, JinRong [1 ]
Zhou, Yong [2 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[2] Xiangtan Univ, Dept Math, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlocal problems; fractional differential equations; existence; generalized singular Gronwall inequality; fixed point method;
D O I
10.7494/OpMath.2011.31.3.341
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and uniqueness of solutions to the nonlocal problems for the fractional differential equation in Banach spaces. New sufficient conditions for the existence and uniqueness of solutions are established by means of fractional calculus and fixed point method under some suitable conditions. Two examples are given to illustrate the results.
引用
收藏
页码:341 / 357
页数:17
相关论文
共 23 条
[1]   Existence results for fractional impulsive integrodifferential equations in Banach spaces [J].
Balachandran, K. ;
Kiruthika, S. ;
Trujillo, J. J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) :1970-1977
[2]   Nonlocal Cauchy problem for abstract fractional semilinear evolution equations [J].
Balachandran, K. ;
Park, J. Y. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4471-4475
[3]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505
[4]  
Byszewski L., 1990, APPL ANAL, V40, P11
[5]   EXPONENTIAL DECAY OF SOLUTIONS OF SEMILINEAR PARABOLIC EQUATIONS WITH NONLOCAL INITIAL CONDITIONS [J].
DENG, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 179 (02) :630-637
[6]  
Kilbas A.A., 2006, N HOLLAND MATH STUDI, V204, pxvi+523
[7]  
Lakshmikantham V., 2009, THEORY FRACTIONAL DY
[8]  
Miller K. S., 1993, INTRO FRACTIONAL CAL
[9]   Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay [J].
Mophou, G. M. ;
N'Guerekata, G. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (01) :61-69
[10]  
N'Guerekata G. M., 2009, COMMUN MATH ANAL, V7, P11