CONVERGENCE OF MUSCL AND FILTERED SCHEMES FOR SCALAR CONSERVATION-LAWS AND HAMILTON-JACOBI EQUATIONS

被引:51
作者
LIONS, PL [1 ]
SOUGANIDIS, PE [1 ]
机构
[1] UNIV WISCONSIN, DEPT MATH, MADISON, WI 53706 USA
关键词
D O I
10.1007/s002110050102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the questions of convergence of: (i) MUSCL type (i.e. second-order, TVD) finite-difference approximations towards the entropic weak solution of scalar, one-dimensional conservation laws with strictly convex flux and (ii) higher-order schemes (filtered to ''preserve'' an upper-bound on some weak second-order finite differences) towards the viscosity solution of scalar, multi-dimensional Hamilton-Jacobi equations with convex Hamiltonians.
引用
收藏
页码:441 / 470
页数:30
相关论文
共 42 条
[1]  
[Anonymous], 1967, MATH SB, V72, P93
[2]  
Barles G., 1991, Asymptotic Analysis, V4, P271
[3]   THE DISCRETE ONE-SIDED LIPSCHITZ CONDITION FOR CONVEX SCALAR CONSERVATION-LAWS [J].
BRENIER, Y ;
OSHER, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (01) :8-23
[4]   A DIRECT EULERIAN MUSCL SCHEME FOR GAS-DYNAMICS [J].
COLELLA, P .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (01) :104-117
[5]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[6]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[7]  
ENGQUIST B, 1989, MATH COMPUT, V52, P509, DOI 10.1090/S0025-5718-1989-0955750-9
[8]  
Godunov S K, 1959, MAT SBORNIK, V47, P271
[9]   A GEOMETRIC APPROACH TO HIGH-RESOLUTION TVD SCHEMES [J].
GOODMAN, JB ;
LEVEQUE, RJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (02) :268-284
[10]   SOME RESULTS ON UNIFORMLY HIGH-ORDER ACCURATE ESSENTIALLY NONOSCILLATORY SCHEMES [J].
HARTEN, A ;
OSHER, S ;
ENGQUIST, B ;
CHAKRAVARTHY, SR .
APPLIED NUMERICAL MATHEMATICS, 1986, 2 (3-5) :347-377