THE INFINITE NUMBER OF GENERALIZED DIMENSIONS OF FRACTALS AND STRANGE ATTRACTORS

被引:1820
作者
HENTSCHEL, HGE
PROCACCIA, I
机构
来源
PHYSICA D | 1983年 / 8卷 / 03期
关键词
D O I
10.1016/0167-2789(83)90235-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:435 / 444
页数:10
相关论文
共 23 条
[1]  
BALATONI J, 1956, PUBL MATH I HUNGARIA, V1, P9
[2]  
FARMER JD, PREPRINT
[3]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[4]   UNIVERSAL METRIC PROPERTIES OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (06) :669-706
[5]   ON DETERMINING THE DIMENSION OF CHAOTIC FLOWS [J].
FROEHLING, H ;
CRUTCHFIELD, JP ;
FARMER, D ;
PACKARD, NH ;
SHAW, R .
PHYSICA D, 1981, 3 (03) :605-617
[6]   ON THE HAUSDORFF DIMENSION OF FRACTAL ATTRACTORS [J].
GRASSBERGER, P .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (01) :173-179
[7]   CHARACTERIZATION OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1983, 50 (05) :346-349
[8]  
GRASSBERGER P, PHYSICA D
[9]   IMPRACTICALITY OF A BOX-COUNTING ALGORITHM FOR CALCULATING THE DIMENSIONALITY OF STRANGE ATTRACTORS [J].
GREENSIDE, HS ;
WOLF, A ;
SWIFT, J ;
PIGNATARO, T .
PHYSICAL REVIEW A, 1982, 25 (06) :3453-3456
[10]  
Hardy G. H., 1952, MATH GAZ