NONLINEAR EVOLUTION OF WHISTLER WAVE MODULATIONAL INSTABILITY

被引:9
作者
KARPMAN, VI [1 ]
LYNOV, JP [1 ]
MICHELSEN, PK [1 ]
RASMUSSEN, JJ [1 ]
机构
[1] HEBREW UNIV JERUSALEM, RACAH INST PHYS, IL-91904 JERUSALEM, ISRAEL
关键词
D O I
10.1063/1.871451
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary differential equations obtained from a Hamiltonian formulation of the governing equations. The long-time evolution of the modulational instability for the FMS-coupling shows a quasi-recurrent behavior with a slow spreading of the energy to higher and higher mode numbers. For the SMS-coupling, no recurrent behavior is found and the energy is gradually leaking to higher mode numbers while the spatial evolution of the modulation tends to develop small scale ''spikes.'' (C) 1995 American Institute of Physics.
引用
收藏
页码:3302 / 3319
页数:18
相关论文
共 50 条
[31]   Demonstration of a nonlinear gap in the modulational instability spectra of wave propagation in highly birefringent fibers [J].
Dinda, PT ;
Millot, G ;
Seve, E ;
Haelterman, M .
OPTICS LETTERS, 1996, 21 (20) :1640-1642
[32]   Modulational instability of a plane wave in the presence of localized perturbations: Experiments in nonlinear fiber optics [J].
Kraych, Adrien E. ;
Suret, Pierre ;
El, Gennady ;
Randoux, Stephane .
2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
[33]   Integrability, modulational instability and mixed localized wave solutions for the generalized nonlinear Schrodinger equation [J].
Li, Xinyue ;
Han, Guangfu ;
Zhao, Qiulan .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02)
[35]   MODULATIONAL INSTABILITY OF NONLINEAR EXPONENTIAL SCHRODINGER WAVES [J].
MURAWSKI, K .
ACTA PHYSICA POLONICA A, 1991, 80 (04) :495-501
[36]   Modulational instability in nonlocal nonlinear Kerr media [J].
Krolikowski, W ;
Bang, O ;
Rasmussen, JJ ;
Wyller, J .
PHYSICAL REVIEW E, 2001, 64 (01)
[37]   Universal Nature of the Nonlinear Stage of Modulational Instability [J].
Biondini, Gino ;
Mantzavinos, Dionyssios .
PHYSICAL REVIEW LETTERS, 2016, 116 (04)
[38]   Modulational instability in fractional nonlinear Schrodinger equation [J].
Zhang, Lifu ;
He, Zenghui ;
Conti, Claudio ;
Wang, Zhiteng ;
Hu, Yonghua ;
Lei, Dajun ;
Li, Ying ;
Fan, Dianyuan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 :531-540
[39]   NONLINEAR EVOLUTION OF WHISTLER INSTABILITIES [J].
OSSAKOW, SL ;
OTT, E ;
HABER, I .
PHYSICS OF FLUIDS, 1972, 15 (12) :2314-2326
[40]   On the modulational instability of the nonlinear Schrodinger equation with dissipation [J].
Rapti, Z. ;
Kevrekidis, P. G. ;
Frantzeskakis, D. J. ;
Malomed, B. A. .
PHYSICA SCRIPTA, 2004, T113 :74-77