THE ATOMIC FINITE ELEMENT METHOD AS A BRIDGE BETWEEN MOLECULAR DYNAMICS AND CONTINUUM MECHANICS

被引:3
作者
Neugebauer, R. [1 ]
Wertheim, R. [1 ]
Semmler, U. [1 ]
机构
[1] Fraunhofer Inst Machine Tools & Forming Technol, Reichenhainer Str 88, D-09126 Chemnitz, Germany
基金
欧盟第七框架计划;
关键词
Finite element method (FEM); atomic finite element method (AFEM); surface coating; nanoindentation;
D O I
10.1142/S1756973711000339
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On cutting tools for high performance cutting (HPC) processes or for hard-to-cut materials, there is an increased importance in so-called superlattice coatings with hundreds of layers each of which is only a few nanometers in thickness. Homogeneity or average material properties based on the properties of single layers are not valid in these dimensions any more. Consequently, continuum mechanical material models cannot be used for modeling the behavior of nanolayers. Therefore, the interaction potentials between the single atoms should be considered. A new, so-called atomic finite element method (AFEM) is presented. In the AFEM the interatomic bonds are modeled as nonlinear spring elements. The AFEM is the connection between the molecular dynamics (MD) method and the crystal plasticity FEM (CPFEM). The MD simulates the atomic deposition process. The CPFEM considers the behavior of anisotropic crystals using the continuum mechanical FEM. On one side, the atomic structure data simulated by MD defines the interface to AFEM. On the other side, the boundary conditions (displacements and tractions) of the AFEM model are interpolated from the CPFEM simulations. In AFEM, the lattice deformation, the crack and dislocation behavior can be simulated and calculated at the nanometer scale.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 11 条
[1]   Self-adaptive wear behavior of nano-multilayered TiAlCrN/WN coatings under severe machining conditions [J].
Fox-Rabinovich, G. S. ;
Yamamoto, K. ;
Veldhuis, S. C. ;
Kovalev, A. I. ;
Shuster, L. S. ;
Ning, L. .
SURFACE & COATINGS TECHNOLOGY, 2006, 201 (3-4) :1852-1860
[2]   Critical strain of carbon nanotubes: An atomic-scale finite element study [J].
Guo, X. ;
Leung, A. Y. T. ;
Jiang, H. ;
He, X. Q. ;
Huang, Y. .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2007, 74 (02) :347-351
[3]   Modified embedded-atom method interatomic potentials for Ti and Zr [J].
Kim, Young-Min ;
Lee, Byeong-Joo ;
Baskes, M. I. .
PHYSICAL REVIEW B, 2006, 74 (01)
[4]   Second nearest-neighbor modified embedded-atom-method potential [J].
Lee, BJ ;
Baskes, MI .
PHYSICAL REVIEW B, 2000, 62 (13) :8564-8567
[5]   A modified embedded-atom method interatomic potential for the Fe-N system: A comparative study with the Fe-C system [J].
Lee, Byeong-Joo ;
Lee, Tae-Ho ;
Kim, Sung-Joon .
ACTA MATERIALIA, 2006, 54 (17) :4597-4607
[6]   The atomic-scale finite element method [J].
Liu, B ;
Huang, Y ;
Jiang, H ;
Qu, S ;
Hwang, KC .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (17-20) :1849-1864
[7]   Embedded-atom potential for B2-NiAl -: art. no. 224114 [J].
Mishin, Y ;
Mehl, MJ ;
Papaconstantopoulos, DA .
PHYSICAL REVIEW B, 2002, 65 (22) :1-14
[8]   A virtual crystal plasticity simulation tool for micro-forming [J].
Wang, S. ;
Zhuang, W. ;
Balint, D. ;
Lin, J. .
MESOMECHANICS 2009, 2009, 1 (01) :75-78
[9]  
Wertheim R., 2001, P INT C IND TOOL, V4, P1
[10]   A modified embedded atom method interatomic potential for the Ti-N system [J].
Yu, Hanjiang ;
Sun, Fengjiu .
PHYSICA B-CONDENSED MATTER, 2009, 404 (12-13) :1692-1694