BERNSTEIN TYPE THEOREMS FOR COMPACT-SETS IN R(N)

被引:16
作者
BARAN, M
机构
[1] Pedagogical University, Department of Mathematics, 30-084 Kraków
关键词
D O I
10.1016/0021-9045(92)90139-F
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give two non-trivial generalizations of a classical Bernstein inequality which is apparently less known that that of Bernstein-Markov, viz. |p′(x)| ≤ k(1 - x2) -1 2 (∥p∥[-1, 1]2 - p2(x)) 1 2, for x ε{lunate} (-1, 1), where p is a real polynomial of deg p ≤ k and ∥p∥[-1, 1] = sup|p|([-1, 1]), to the case of a compact set E in Rn with nonempty interior. Contrary to the situation where estimates for p′(x) are sought on the whole compact set, we do not, in general, need any other assumptions on E. Our results point out connections between Bernstein's inequality and two important notions in modern polynomial approximation theory on compacta in Cn: Siciak's extremal function and complex equilibrium measure. © 1992.
引用
收藏
页码:156 / 166
页数:11
相关论文
共 22 条
[2]  
Baran M., 1995, ANN POL MATH, V48, P275, DOI [10.4064/ap-48-3-275-280, DOI 10.4064/AP-48-3-275-280]
[3]  
BARAN M, 1989, THESIS JAGIELLONIAN
[4]  
BARAN M, IN PRESS P AM MATH S
[5]  
BARAN M, IN PRESS MICHIGAN MA
[6]   THE COMPLEX EQUILIBRIUM MEASURE OF A SYMMETRICAL CONVEX SET IN RN [J].
BEDFORD, E ;
TAYLOR, BA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 294 (02) :705-717
[7]   A NEW CAPACITY FOR PLURISUBHARMONIC-FUNCTIONS [J].
BEDFORD, E ;
TAYLOR, BA .
ACTA MATHEMATICA, 1982, 149 (1-2) :1-40
[8]  
BEDFORD E, 1985, LUNDINS REPRESENTATI
[9]  
BERNSTEIN SN, 1952, COLLECTED PAPERS, V1
[10]  
CEGRELL U, 1985, U IAGELLONICAE ACTA, V25, P115