LIMITATIONS ON THE STABILIZABILITY OF GLOBALLY MINIMUM PHASE SYSTEMS

被引:32
|
作者
SUSSMANN, HJ
机构
[1] Department of Mathematics, Rutgers University, New Brunswick
关键词
D O I
10.1109/9.45159
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We give examples showing that, in general, it is possible, for a globally minimum phase system in normal form, to have states that cannot be driven asymptotically to the origin by means of any open-loop control. In particular, this provides counterexamples to a number of recently published stabilization theorems. © 1990 IEEE
引用
收藏
页码:117 / 119
页数:3
相关论文
共 50 条
  • [21] IMPULSIVE STABILIZABILITY OF AUTONOMOUS SYSTEMS
    LIU, XZ
    WILLMS, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 187 (01) : 17 - 39
  • [22] Partial stabilizability of nonholonomic systems
    Ecole Polytechnique de Tunisie, Tunisia
    WSEAS Trans. Syst., 2006, 5 (947-952):
  • [23] Stabilizability of Linear Impulsive Systems
    Lawrence, Douglas A.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 4328 - 4333
  • [24] On stabilizability of stochastic fuzzy systems
    Boukas, E. K.
    El-Hajjaji, A.
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 4362 - 4366
  • [25] To the Problem of the Nonlinear Systems Stabilizability
    Onishchenko, S. M.
    JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2011, 43 (01) : 1 - 12
  • [26] Stabilizability of fractional dynamical systems
    Balachandran, Krishnan
    Govindaraj, Venkatesan
    Rodriguez-Germa, Luis
    Trujillo, Juan J.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) : 511 - 531
  • [27] NON-MINIMUM PHASE SYSTEMS
    Lestach, Lukas
    Mikova, Lubica
    Prada, Erik
    Virgala, Ivan
    Brada, Leo
    MM SCIENCE JOURNAL, 2023, 2023 : 7143 - 7147
  • [28] UNCONDITIONAL STABILIZER FOR MINIMUM PHASE SYSTEMS
    DELARMINAT, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (01): : 49 - 51
  • [29] ON THE MINIMUM PHASE OF COMPARTMENTAL-SYSTEMS
    MURATORI, S
    PICCARDI, C
    RINALDI, S
    INTERNATIONAL JOURNAL OF CONTROL, 1992, 56 (01) : 23 - 34
  • [30] LMI approach to spectral stabilizability of linear delay systems and stabilizability of linear systems with complex parameter
    Bliman, PA
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 1438 - 1443