EXTENDING THE APPLICABILITY OF NEWTON'S METHOD ON RIEMANNIAN MANIFOLDS WITH VALUES IN A CONE

被引:0
作者
Argyros, Ioannis K. [1 ]
George, Santhosh [2 ]
机构
[1] Cameron Univ Lawton, Dept Math Sci, Lawton, OK 73505 USA
[2] Natl Inst Technol Karnataka, Dept Math & Computat Sci, Mangalore 757025, Karnataka, India
关键词
Newton's method; Riemannian manifold; semilocal convergence; L-average Lipschitz condition;
D O I
10.1142/S1793557113500411
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new semilocal convergence analysis of Newton's method on Riemannian manifolds with values in a cone in order to solve the inclusion problem. Using more precise majorizing sequences than in earlier studies such as [J. H. Wang, S. Huang and C. Li, Extended Newton's method for mappings on Riemannian manifolds with values in a cone, Taiwanese J. Math. 13(2B) (2009) 633-656] and the concept of L-average Lipschitz condition we provide: weaker sufficient convergence conditions; tighter error analysis on the distances involved and an at least as precise information on the solutions. These advantages are obtained using the same parameters and functions. Applications include the celebrated Newton-Kantorovich theorem.
引用
收藏
页数:15
相关论文
共 35 条
  • [1] Newton's method on Riemannian manifolds and a geometric model for the human spine
    Adler, RL
    Dedieu, JP
    Margulies, JY
    Martens, M
    Shub, M
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (03) : 359 - 390
  • [2] A unifying local convergence result for Newton's method in Riemannian manifolds
    Alvarez, F.
    Bolte, J.
    Munier, J.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (02) : 197 - 226
  • [3] Adaptive approximation of nonlinear operators
    Amat, S
    Busquier, S
    Negra, M
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (5-6) : 397 - 405
  • [4] [Anonymous], 1994, FIELDS INSTIT COMMUN
  • [5] Argyros I. K., 2008, REV ANAL NUMER THEOR, V37, P110
  • [6] Argyros I. K., 2012, NUMERICAL METHODS EQ
  • [7] Argyros I. K., 2005, ADV NONINEAR VARIAT, V8, P53
  • [8] Argyros I.K., 2008, CONVERGENCE APPL NEW
  • [9] Argyros I.K., 2008, J CONCERETE APPL ANA, V6, P21
  • [10] Extending the applicability of Newton's method on Lie groups
    Argyros, Ioannis K.
    Hilout, Said
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (20) : 10355 - 10365