INHIBITION OF PROTEOGLYCAN SYNTHESIS INFLUENCES REGENERATION OF GOLDFISH RETINAL AXONS ON POLYLYSINE AND LAMININ

被引:9
|
作者
CHALLACOMBE, JF
ELAM, JS
机构
[1] FLORIDA STATE UNIV,DEPT BIOL SCI,TALLAHASSEE,FL 32306
[2] FLORIDA STATE UNIV,PROGRAM NEUROSCI,TALLAHASSEE,FL 32306
关键词
D O I
10.1006/exnr.1995.1043
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Previous studies have shown that goldfish retinal axons regenerating in vivo transport increased radioactivity in the glycosaminoglycan (GAG) components of proteoglycans (PGs). During this enhanced transport, the ratio of chondroitin sulfate (CS) to heparan sulfate (HS) was 60/40. In the present investigation, PG synthesis was inhibited during in vitro axon growth from regenerating goldfish retinal explants. Explants growing on either poly-L-lysine (PLYS) or poly-L-lysine + laminin (PLYS + LN) incorporated (SO4)-S-35 into proteoglycan-bound CS and HS in an approximate 2/1 ratio. Addition of 4-methylumbelliferyl beta-D-xyloside (beta-xyloside) to the culture medium reduced the sulfate radioactivity in proteoglycan-bound CS and HS by 89 and 71%, respectively, on PLYS and by 89 and 72% on PLYS + LN. Morphological evaluation of explants revealed that beta-xyloside treatment reduced both the number of retinal axons per explant and their growth rate on PLYS; on PLYS + LN this treatment reduced the number of axons, but had no effect on growth rate. This study suggests that retinal ganglion cell PGs containing CS and/or HS GAG chains are required for both the initiation and the maintenance of axonal outgrowth on artificial polycationic substrata such as PLYS, but only for the initiation of outgrowth on laminin. (C) 1995 Academic Press, Inc.
引用
收藏
页码:126 / 134
页数:9
相关论文
共 15 条