ON MILNOR FIBRATIONS OF ARRANGEMENTS

被引:63
作者
COHEN, DC [1 ]
SUCIU, AI [1 ]
机构
[1] NORTHEASTERN UNIV,DEPT MATH,BOSTON,MA 02115
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 1995年 / 51卷
关键词
D O I
10.1112/jlms/51.1.105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use covering space theory and homology with local coefficients to study the Milnor fiber of a homogeneous polynomial. These techniques are applied in the context of hyperplane arrangements, yielding an explicit algorithm for computing the Betti numbers of the Milnor fiber of an arbitrary real central arrangement in C-3, as well as the dimensions of the eigenspaces of the algebraic monodromy. We also obtain combinatorial formulas for these invariants of the Milnor fiber of a generic arrangement of arbitrary dimension using these methods.
引用
收藏
页码:105 / 119
页数:15
相关论文
共 25 条
[1]  
ARTALBARTOLO E, 1990, PREMIER NOMBRE BETTI
[2]   THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF AN ARRANGEMENT OF COMPLEX HYPERPLANES [J].
ARVOLA, WA .
TOPOLOGY, 1992, 31 (04) :757-765
[3]  
Brown K. S., 1982, COHOMOLOGY GROUPS, V87
[4]   COHOMOLOGY AND INTERSECTION COHOMOLOGY OF COMPLEX HYPERPLANE ARRANGEMENTS [J].
COHEN, DC .
ADVANCES IN MATHEMATICS, 1993, 97 (02) :231-266
[5]  
DIMCA A, 1990, COMPOS MATH, V76, P19
[6]  
Dimca A., 1992, SINGULARITIES TOPOLO
[7]   MILNOR FIBER OF A CONE ON A SINGLE SMOOTH CURVE [J].
ESNAULT, H .
INVENTIONES MATHEMATICAE, 1982, 68 (03) :477-496
[8]   HOMOTOPY TYPES OF LINE ARRANGEMENTS [J].
FALK, M .
INVENTIONES MATHEMATICAE, 1993, 111 (01) :139-150
[9]  
HATTORI A, 1975, J FS U TOKYO, V22, P205
[10]  
HILBERT D, 1933, GEOMETRY IMAGINATION