ON A THEOREM OF PLUNNECKE CONCERNING THE SUM OF A BASIS AND A SET OF POSITIVE DENSITY

被引:3
作者
MALOUF, JL [1 ]
机构
[1] UNIV ILLINOIS,DEPT MATH,URBANA,IL 61801
关键词
D O I
10.1006/jnth.1995.1098
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1935 Erdos proved that every additive basis I of order h is an essential component by showing sigma(A + B) greater than or equal to sigma(A) + (1/2h) sigma(A)(1 - sigma(A)), where sigma denotes Schnirelmann density. This lower bound was improved by Pliinnecke to sigma(A + B) greater than or equal to sigma(A)(1-1/h), giving the best exponent. A simplified proof is presented. (C) 1995 Academic Press, Inc.
引用
收藏
页码:12 / 22
页数:11
相关论文
共 8 条
[1]   SHORT PROOF OF MENGERS GRAPH THEOREM [J].
DIRAC, GA .
MATHEMATIKA, 1966, 13 (25P1) :42-&
[2]  
Erdos P., 1936, ACTA ARITH, V1, P197
[3]  
HALBERSTAM H., 1983, SEQUENCES
[4]  
NATHANSON MB, 1990, BEST POSSIBLE RESULT, P398
[5]  
Plnnecke H., 1969, EIGENSCHAFTEN ABSCHA
[6]  
PLUNNECKE H, 1970, J REINE ANGEW MATH, V243, P171
[7]  
Ruzsa I. Z., 1989, SCIENTIA A, V3, P97
[8]  
Stohr A., 1956, J REINE ANGEW MATH, V196, P96