RATIONAL MOMENT PROBLEMS FOR COMPACT-SETS

被引:2
作者
CHANDLER, JD
机构
[1] Department of Mathematics, East Carolina University, Greenville
[2] Portsmouth, VA 23707
关键词
D O I
10.1006/jath.1994.1114
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following ''rational'' moment problem is discussed. Given distinct real numbers lambda(1), lambda(2),..., lambda(p) (the ''poles'' of the problem), real numbers c(0) and c(j)((i)) (j = 1, 2, 3,...; i = 1, 2,..., p), and a non-empty compact subset K of (- infinity, + infinity), find necessary and sufficient conditions that there exist a non-negative Borel measure mu, supported on K, such that c(0) = integral(K) d mu(t) and c(j)((i)) = integral(K)(t - lambda(i))(-j) d mu(t) for j = 1, 2, 3,... and i = 1, 2,..., p. (C) 1994 Academic Press, Inc.
引用
收藏
页码:72 / 88
页数:17
相关论文
共 17 条
[1]  
Akhiezer N., 1965, CLASSICAL MOMENT PRO
[2]   POLYNOMIALLY POSITIVE DEFINITE SEQUENCES [J].
BERG, C ;
MASERICK, PH .
MATHEMATISCHE ANNALEN, 1982, 259 (04) :487-495
[3]  
Chihara T.S., 1978, INTRO ORTHOGONAL POL
[4]  
Dunford N., 1958, LINEAR OPERATORS
[5]  
Freud G., 1971, ORTHOGONAL POLYNOMIA
[6]  
Jones W.B., 1981, QUANTUM MECH MATH CH, P449
[7]   ORTHOGONAL LAURENT POLYNOMIALS AND THE STRONG HAMBURGER MOMENT PROBLEM [J].
JONES, WB ;
THRON, WJ ;
NJASTAD, O .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1984, 98 (02) :528-554
[8]   A STRONG STIELTJES MOMENT PROBLEM [J].
JONES, WB ;
THRON, WJ ;
WAADELAND, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 261 (02) :503-528
[9]  
Krein M. G., 1977, T MATH MONOGRAPHS, V50
[10]   UNIQUE SOLVABILITY OF AN EXTENDED STIELTJES MOMENT PROBLEM [J].
NJASTAD, O .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (01) :78-82