DISTINCT DEGREE FACTORIZATIONS FOR POLYNOMIALS OVER A FINITE-FIELD

被引:11
作者
KNOPFMACHER, A [1 ]
WARLIMONT, R [1 ]
机构
[1] UNIV REGENSBURG,NWF MATH,D-93053 REGENSBURG,GERMANY
关键词
D O I
10.2307/2154936
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-q[X] denote the multiplicative semigroup of monic polynomials in one indeterminate X, over a finite field F-q. We determine for each fixed q and fixed n the probability that a polynomial of degree n in F-q[X] has irreducible factors of distinct degrees only. These results are of relevance to various polynomial factorization algorithms.
引用
收藏
页码:2235 / 2243
页数:9
相关论文
共 9 条
[1]   FACTORING POLYNOMIALS USING FEWER RANDOM BITS [J].
BACH, E ;
SHOUP, V .
JOURNAL OF SYMBOLIC COMPUTATION, 1990, 9 (03) :229-239
[2]  
Ben-Or M., 1981, 22nd Annual Symposium on Foundations of Computer Science, P394, DOI 10.1109/SFCS.1981.37
[3]  
CANTOR DG, 1981, MATH COMPUT, V36, P587, DOI 10.1090/S0025-5718-1981-0606517-5
[4]  
Greene D.H., 1990, MATH ANAL ALGORITHMS, V3rd
[5]  
KNOPFMACHER J, 1979, ANAL ARITHMETIC ALGE
[6]  
Knuth D.E., 1981, ART COMPUTER PROGRAM, V2
[7]  
MINOTTE M, 1992, MATH COMPUTER ALGEBR
[8]   ON THE DETERMINISTIC COMPLEXITY OF FACTORING POLYNOMIALS OVER FINITE-FIELDS [J].
SHOUP, V .
INFORMATION PROCESSING LETTERS, 1990, 33 (05) :261-267
[9]  
SHPARLINSKI IG, 1992, COMPUTATIONAL ALGOIT