THE MAXIMUM OF A RANDOM-WALK WHOSE MEAN PATH HAS A MAXIMUM

被引:30
作者
DANIELS, HE
SKYRME, THR
机构
[1] UNIV BIRMINGHAM,DEPT MATH,BIRMINGHAM B15 2TT,W MIDLANDS,ENGLAND
[2] UNIV CAMBRIDGE,CAMBRIDGE,ENGLAND
关键词
D O I
10.2307/1427054
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:85 / 99
页数:15
相关论文
共 9 条
[1]  
Abramowitz M., 1970, HDB MATH FNCTIONS
[2]   BROWNIAN-MOTION AND A SHARPLY CURVED BOUNDARY [J].
BARBOUR, AD .
ADVANCES IN APPLIED PROBABILITY, 1981, 13 (04) :736-750
[3]  
BARBOUR AD, 1975, J ROY STAT SOC B MET, V37, P459
[4]  
Daniels H. E., 1945, P ROY SOC LOND A MAT, V183, P404
[5]  
Daniels H.E., 1974, ADV APPL PROBAB, V6, P607, DOI DOI 10.2307/1426182
[6]   1ST EXIT DENSITIES OF BROWNIAN-MOTION THROUGH ONE-SIDED MOVING BOUNDARIES [J].
JENNEN, C ;
LERCHE, HR .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 55 (02) :133-148
[7]   APPROXIMATION OF PARTIAL SUMS OF INDEPENDENT RV-S, AND SAMPLE DFI [J].
KOMLOS, J ;
MAJOR, P ;
TUSNADY, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 32 (1-2) :111-131
[8]  
Phoenix SL., 1973, ADV APPL PROBAB, V5, P200, DOI [10.2307/1426033, DOI 10.2307/1426033]
[9]  
SMITH RE, 1982, APPL MATH COMPUT, V10, P137, DOI 10.1214/aop/1176993919