A 2ND PROOF OF THE PAYNE-POLYA-WEINBERGER CONJECTURE

被引:39
作者
ASHBAUGH, MS [1 ]
BENGURIA, RD [1 ]
机构
[1] PONTIFICIA UNIV CATOLICA,FAC FIS,SANTIAGO 22,CHILE
关键词
D O I
10.1007/BF02099533
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Without using product representations or elaborate comparisons of zeros we prove the two key properties of the Bessel function ratio J(p + 1)(j(p + 1, 1)x)/J(p)(j(p, 1)x) that we used to prove the Payne-Polya-Weinberger conjecture. In these new proofs we use only differential equations and the Rayleigh-Ritz method for estimating lowest eigenvalues. The new proofs admit generalization to other related problems where our previous proofs fail.
引用
收藏
页码:181 / 190
页数:10
相关论文
共 14 条
[1]  
ABRAMOWITZ M, 1964, NBS APPLIED MATH SER, V55
[2]   PROOF OF THE PAYNE-POLYA-WEINBERGER CONJECTURE [J].
ASHBAUGH, MS ;
BENGURIA, RD .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 25 (01) :19-29
[3]   LOG-CONCAVITY OF THE GROUND-STATE OF SCHRODINGER-OPERATORS - A NEW PROOF OF THE BAUMGARTNER-GROSSE-MARTIN INEQUALITY [J].
ASHBAUGH, MS ;
BENGURIA, RD .
PHYSICS LETTERS A, 1988, 131 (4-5) :273-276
[4]  
ASHBAUGH MS, IN PRESS ANN MATH
[5]   MONOTONICITY PROPERTIES OF THE ZEROS OF BESSEL-FUNCTIONS [J].
ELBERT, A ;
LAFORGIA, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (06) :1483-1488
[6]   HIGHER MONOTONICITY PROPERTIES AND INEQUALITIES FOR ZEROS OF BESSEL-FUNCTIONS [J].
GORI, LNA ;
LAFORGIA, A ;
MULDOON, ME .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (02) :513-520
[7]   ON THE VARIATION WITH RESPECT TO A PARAMETER OF ZEROS OF BESSEL AND Q-BESSEL FUNCTIONS [J].
ISMAIL, MEH ;
MULDOON, ME .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 135 (01) :187-207
[8]   CAPILLARY SURFACE CONVEXITY ABOVE CONVEX DOMAINS [J].
KOREVAAR, N .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (01) :73-81
[10]   TURANIANS AND WRONSKIANS FOR THE ZEROS OF BESSEL-FUNCTIONS [J].
LORCH, L .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1980, 11 (02) :223-227