A phenomenological model of seizure initiation suggests network structure may explain seizure frequency in idiopathic generalised epilepsy

被引:80
作者
Benjamin, Oscar [1 ]
Fitzgerald, Thomas H. B. [2 ]
Ashwin, Peter [3 ]
Tsaneva-Atanasova, Krasimira [1 ]
Chowdhury, Fahmida [2 ]
Richardson, Mark P. [2 ]
Terry, John R. [4 ,5 ]
机构
[1] Univ Bristol, Dept Engn Math, Bristol BS8 1TR, Avon, England
[2] Kings Coll London, Inst Psychiat, London SE5 8AF, England
[3] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England
[4] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3EJ, S Yorkshire, England
[5] Univ Sheffield, Sheffield Inst Translat Neurosci, Sheffield S10 2TN, S Yorkshire, England
来源
JOURNAL OF MATHEMATICAL NEUROSCIENCE | 2012年 / 2卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1186/2190-8567-2-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We describe a phenomenological model of seizure initiation, consisting of a bistable switch between stable fixed point and stable limit-cycle attractors. We determine a quasi- analytic formula for the exit time problem for our model in the presence of noise. This formula - which we equate to seizure frequency - is then validated numerically, before we extend our study to explore the combined effects of noise and network structure on escape times. Here, we observe that weakly connected networks of 2, 3 and 4 nodes with equivalent first transitive components all have the same asymptotic escape times. We finally extend this work to larger networks, inferred from electroencephalographic recordings from 35 patients with idiopathic generalised epilepsies and 40 controls. Here, we find that network structure in patients correlates with smaller escape times relative to network structures from controls. These initial findings are suggestive that network structure may play an important role in seizure initiation and seizure frequency.
引用
收藏
页数:30
相关论文
共 28 条
  • [1] PROPOSAL FOR REVISED CLASSIFICATION OF EPILEPSIES AND EPILEPTIC SYNDROMES
    不详
    [J]. EPILEPSIA, 1989, 30 (04) : 389 - 399
  • [2] [Anonymous], 1965, GRUNDLEHREN MATH WIS
  • [3] The descriptive epidemiology of epilepsy-A review
    Banerjee, Poonam Nina
    Filippi, David
    Hauser, W. Allen
    [J]. EPILEPSY RESEARCH, 2009, 85 (01) : 31 - 45
  • [4] Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005-2009
    Berg, Anne T.
    Berkovic, Samuel F.
    Brodie, Martin J.
    Buchhalter, Jeffrey
    Cross, J. Helen
    Boas, Walter van Emde
    Engel, Jerome
    French, Jacqueline
    Glauser, Tracy A.
    Mathern, Gary W.
    Moshe, Solomon L.
    Nordli, Douglas
    Plouin, Perrine
    Scheffer, Ingrid E.
    [J]. EPILEPSIA, 2010, 51 (04) : 676 - 685
  • [5] A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis
    Breakspear, M.
    Roberts, J. A.
    Terry, J. R.
    Rodrigues, S.
    Mahant, N.
    Robinson, P. A.
    [J]. CEREBRAL CORTEX, 2006, 16 (09) : 1296 - 1313
  • [6] Large-scale neural dynamics: Simple and complex
    Coombes, S.
    [J]. NEUROIMAGE, 2010, 52 (03) : 731 - 739
  • [7] Dynamical diseases of brain systems: Different routes to epileptic seizures
    da Silva, FHL
    Blanes, W
    Kalitzin, SN
    Parra, J
    Suffczynski, P
    Velis, DN
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2003, 50 (05) : 540 - 548
  • [8] LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations
    Destexhe, A
    Contreras, D
    Steriade, M
    [J]. NEUROCOMPUTING, 2001, 38 : 555 - 563
  • [9] Destexhe A, 1998, J NEUROSCI, V18, P9099
  • [10] Bifurcation analysis of Jansen's neural mass model
    Grimbert, Francois
    Faugeras, Olivier
    [J]. NEURAL COMPUTATION, 2006, 18 (12) : 3052 - 3068