ENTROPY ESTIMATES FOR SIMPLICIAL QUANTUM-GRAVITY

被引:1
作者
CARFORA, M
MARZUOLI, A
机构
[1] SISSA, ISAS, INT SCH ADV STUDIES, I-34013 TRIESTE, ITALY
[2] UNIV PAVIA, DIPARTIMENTO FIS NUCL & TEOR, I-27100 PAVIA, ITALY
[3] IST NAZL FIS NUCL, SEZ PAVIA, I-27100 PAVIA, ITALY
基金
美国国家科学基金会;
关键词
SIMPLICIAL QUANTUM GRAVITY; ENTROPY;
D O I
10.1016/0393-0440(94)00022-V
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Through techniques of controlled topology we determine the entropy function characterizing the distribution of combinatorially inequivalent metric ball coverings of n-dimensional manifolds of bounded geometry for every n greater than or equal to 2. Such functions control the asymptotic distribution of dynamical triangulations of the corresponding n-dimensional (pseudo)manifolds M of bounded geometry. They have an exponential leading behavior determined by the Reidemeister-Franz torsion associated with orthogonal representations of the fundamental group of the manifold The subleading terms are instead controlled by the Euler characteristic of M. Such results are either consistent with the known asymptotics of dynamically triangulated two-dimensional surfaces, or with the numerical evidence supporting an exponential leading behavior for the number of inequivalent dynamical triangulations on three- and four-dimensional manifolds.
引用
收藏
页码:99 / 119
页数:21
相关论文
共 50 条
  • [41] Quantum Chaos and Dynamical Entropy
    Fabio Benatti
    Thomas Hudetz
    Andreas Knauf
    Communications in Mathematical Physics, 1998, 198 : 607 - 688
  • [42] Information and Entropy in Quantum Brownian MotionThermodynamic Entropy versus von Neumann Entropy
    Christian Hörhammer
    Helmut Büttner
    Journal of Statistical Physics, 2008, 133 : 1161 - 1174
  • [43] An entropy function of a quantum channel
    Chu, Yanjun
    Huang, Fang
    Li, Ming-Xiao
    Zheng, Zhu-Jun
    QUANTUM INFORMATION PROCESSING, 2022, 22 (01)
  • [44] Entropy of quantum states: Ambiguities
    Balachandran, A. P.
    de Queiroz, A. R.
    Vaidya, S.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2013, 128 (10): : 1 - 12
  • [45] Entropy in Foundations of Quantum Physics
    Pawlowski, Marcin
    ENTROPY, 2020, 22 (03)
  • [46] Entropy of quantum states: Ambiguities
    A. P. Balachandran
    A. R. de Queiroz
    S. Vaidya
    The European Physical Journal Plus, 128
  • [47] Quantum dynamics, measurement and entropy
    Alicki, R
    Fannes, M
    REPORTS ON MATHEMATICAL PHYSICS, 2005, 55 (01) : 47 - 59
  • [48] Estimates of entropy for multiplier operators of systems of orthonormal functions
    Milare, J.
    Kushpel, A. K.
    Tozoni, S. A.
    JOURNAL OF APPROXIMATION THEORY, 2023, 285
  • [49] Nature of entropy in a scalar-tensor theory of gravity
    Siginc, Onur
    Salti, Mustafa
    Yanar, Hilmi
    Aydogdu, Oktay
    TURKISH JOURNAL OF PHYSICS, 2018, 42 (06): : 621 - 630
  • [50] Plenty of nothing: Black hole entropy in induced gravity
    V. P. Frolov
    D. V. Fursaev
    Journal of Astrophysics and Astronomy, 1999, 20 : 121 - 129