THE MEAN LATTICE POINT DISCREPANCY

被引:15
作者
HUXLEY, MN [1 ]
机构
[1] UNIV WALES COLL CARDIFF,SCH MATH,CARDIFF CF2 4YH,S GLAM,WALES
关键词
D O I
10.1017/S0013091500019313
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a sufficiently smooth simple closed convex plane curve enclosing the origin, expanding linearly with time. The root mean square of the discrepancy (number of lattice points minus area) from time t=M to t=M+1 is almost as small as the root mean square discrepancy from time t=0 to t=M, so the discrepancy has no memory.
引用
收藏
页码:523 / 531
页数:9
相关论文
共 15 条
[1]  
CHAIX H, 1972, C R ACD SCI PARIS, V275, pA883
[2]  
DEVERDIERE YC, 1977, ANN SCI ECOLE NORM S, V10, P559
[3]   NUMBER OF LATTICE POINTS IN A CONVEX SET [J].
HERZ, CS .
AMERICAN JOURNAL OF MATHEMATICS, 1962, 84 (01) :126-&
[4]   FOURIER TRANSFORMS RELATED TO CONVEX SETS [J].
HERZ, CS .
ANNALS OF MATHEMATICS, 1962, 75 (01) :81-&
[5]  
Hlawka E., 1950, MONATSH MATH, V54, P81
[6]  
HLAWKA E, 1950, MONATSHEFTE MATH, V0054, P00001
[7]  
Huxley M.N., 1994, ANN SC NORM SUPER PI, V21, P357
[8]  
HUXLEY MN, IN PRESS AREA LATTIC
[9]   ON THE GENERALIZED BIRTH-AND-DEATH PROCESS [J].
KENDALL, DG .
ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (01) :1-15