DIRECT LYAPUNOV METHOD AND STABILITY OF SOME SOLUTIONS OF KLINE-GORDON NONLINEAR EQUATION

被引:0
|
作者
LAVKIN, AG
机构
来源
IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA | 1991年 / 34卷 / 03期
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:333 / 335
页数:3
相关论文
共 50 条
  • [1] Direct Lyapunov method and stability of some solutions of Klein-Gordon nonlinear equation
    Lavkin, A.G.
    Izvestiya VUZ: Radiofizika, 1991, 34 (03): : 333 - 335
  • [2] Direct Lyapunov method in nonlinear stability of complex flows
    Vladimirov, V.A.
    Moffatt, H.K.
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (1 PART 1): : 563 - 566
  • [3] LYAPUNOV STABILITY OF STATIONARY SOLUTIONS FOR THE BURGERS-EQUATION WITH NONLINEAR VISCOSITY
    ORLOV, VP
    SOBOLEVSKY, PE
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1986, (09): : 18 - 20
  • [4] Direct Lyapunov method in nonlinear stability of complex flows.
    Vladimirov, VA
    Moffatt, HK
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (01) : 563 - 566
  • [5] A METHOD FOR GENERATING ANALYTICAL SOLUTIONS OF THE NONLINEAR KLEIN-GORDON EQUATION
    GRIGOROV, A
    OUROUSHEV, D
    PHYSICS LETTERS A, 1993, 183 (04) : 289 - 292
  • [6] NONLINEAR STABILITY OF BREATHER SOLUTIONS TO THE MODIFIED KDV-SINE-GORDON EQUATION
    Wang, Jingqun
    Zhang, Yingnan
    Tian, Lixin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (05): : 2043 - 2056
  • [7] Stability of fractional-order nonlinear systems by Lyapunov direct method
    Tuan, Hoang T.
    Hieu Trinh
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (17): : 2417 - 2422
  • [8] A METHOD FOR GENERATING EXACT-SOLUTIONS OF THE NONLINEAR KLEIN-GORDON EQUATION
    GRIGOROV, A
    MARTINOV, N
    OUROUSHEV, D
    GEORGIEV, V
    CANADIAN JOURNAL OF PHYSICS, 1992, 70 (06) : 467 - 469
  • [9] SOME L∞ SOLUTIONS OF THE HYPERBOLIC NONLINEAR SCHRODINGER EQUATION AND THEIR STABILITY
    Correia, Simao
    Figueira, Mario
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2019, 24 (1-2) : 1 - 30
  • [10] Some exact solutions to the inhomogeneous higher-order nonlinear Schrodinger equation by a direct method
    Zhang Huan-Ping
    Li Biao
    Chen Yong
    CHINESE PHYSICS B, 2010, 19 (06)