ON STABLE MARKOV-PROCESSES

被引:9
作者
ADLER, RJ
CAMBANIS, S
SAMORODNITSKY, G
机构
[1] UNIV N CAROLINA,CTR STOCHAST PROC,DEPT STAT,CHAPEL HILL,NC 27599
[2] CORNELL UNIV,DEPT OPERAT RES & IND ENGN,ITHACA,NY 14853
关键词
left and right stable Ornstein-Unlenbeck processes; Markoc and weakly Markov stable processes; moving averages; stable conditional distributions; sub-Gaussian and harmonizable processes; time changed Lévy motion;
D O I
10.1016/0304-4149(90)90052-T
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Necessary conditions are given for a symmetric α-stable (SαS) process, 1 < α < 2, to be Markov. These conditions are then applied to find Markov or weakly Markov processes within certain important classes of SαS processes: time changed Lévy motion, scale mixed Gaussian processes, moving averages and harmonizable processes. Two stationary SαS Markov processes are introduced, the right and the left SαS Ornstein-Uhlenbeck processes. Some of the results are in sharp contrast to the Gaussian case α = 2. © 1990.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
[21]   Testing for Hermite Rank in Gaussian Subordination Processes [J].
Beran, Jan ;
Moehrle, Sven ;
Ghosh, Sucharita .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (03) :917-934
[22]   Model identification for infinite variance autoregressive processes [J].
Andrews, Beth ;
Davis, Richard A. .
JOURNAL OF ECONOMETRICS, 2013, 172 (02) :222-234
[23]   Stable limits for sums of dependent infinite variance random variables [J].
Bartkiewicz, Katarzyna ;
Jakubowski, Adam ;
Mikosch, Thomas ;
Wintenberger, Olivier .
PROBABILITY THEORY AND RELATED FIELDS, 2011, 150 (3-4) :337-372
[24]   A FUNCTIONAL LIMIT THEOREM FOR DEPENDENT SEQUENCES WITH INFINITE VARIANCE STABLE LIMITS [J].
Basrak, Bojan ;
Krizmanic, Danijel ;
Segers, Johan .
ANNALS OF PROBABILITY, 2012, 40 (05) :2008-2033
[25]   CONDITIONAL MOMENTS AND LINEAR-REGRESSION FOR STABLE RANDOM-VARIABLES [J].
SAMORODNITSKY, G ;
TAQQU, MS .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1991, 39 (02) :183-199
[26]   REGULAR VARIATION OF INFINITE SERIES OF PROCESSES WITH RANDOM COEFFICIENTS [J].
Balan, Raluca .
STOCHASTIC MODELS, 2014, 30 (03) :420-438
[27]   Non-stationary autoregressive processes with infinite variance [J].
Chan, Ngai Hang ;
Zhang, Rongmao .
JOURNAL OF TIME SERIES ANALYSIS, 2012, 33 (06) :916-934
[28]   Spectral Representation of Multivariate Regularly Varying Levy and CARMA Processes [J].
Fuchs, Florian ;
Stelzer, Robert .
JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (02) :410-436
[29]   Some Remarks on Definitions of Memory for Stationary Random Processes and Fields [J].
Paulauskas, Vygantas .
LITHUANIAN MATHEMATICAL JOURNAL, 2016, 56 (02) :229-250
[30]   Joint functional convergence of partial sums and maxima for linear processes* [J].
Krizmanic, Danijel .
LITHUANIAN MATHEMATICAL JOURNAL, 2018, 58 (04) :457-479