On noncompact perturbation of nonconvex sweeping process

被引:0
作者
Aitalioubrahim, Myelkebir [1 ]
机构
[1] High Sch Ibn Khaldoune, BP 13100, Commune Bouznika, Morocco
来源
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE | 2012年 / 53卷 / 01期
关键词
nonconvex sweeping process; functional differential inclusion; uniformly rho-prox-regular sets;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a theorem on the existence of solutions of a first order functional differential inclusion governed by a class of nonconvex sweeping process with a noncompact perturbation.
引用
收藏
页码:65 / 77
页数:13
相关论文
共 15 条
[1]  
Aubin, 1984, DIFFERENTIAL INCLUSI, V264, DOI [DOI 10.1007/978-3-642-69512-4, 10.1007/978-3-642-69512-4]
[2]  
Bounkhel M, 2005, J NONLINEAR CONVEX A, V6, P359
[3]  
Castaing C., 1977, LECT NOTES MATH
[4]  
Castaing C., 1993, SET-VALUED ANAL, V1, P109
[5]  
Castaing P., 1997, PORT MATH, V54, P485
[6]  
Clarke F. H., 1995, J CONVEX ANAL, V2, P117
[7]   BV solutions of nonconvex sweeping process differential inclusion with perturbation [J].
Edmond, Jean Fenel ;
Thibault, Lionel .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 226 (01) :135-179
[8]   Delay perturbed sweeping process [J].
Fenel Edmond, Jean .
SET-VALUED ANALYSIS, 2006, 14 (03) :295-317
[9]   Mixed semicontinuous perturbations of nonconvex sweeping processes [J].
Haddad, Tahar ;
Thibault, Lionel .
MATHEMATICAL PROGRAMMING, 2010, 123 (01) :225-240
[10]  
Moreau J-J., 1976, LECT NOTES MATH, P56, DOI DOI 10.1007/BFB0088746