ON INDEPENDENT AND (d, n)-DOMINATION NUMBERS OF HYPERCUBES

被引:0
作者
Mane, S. A. [1 ]
Waphare, B. N. [1 ]
机构
[1] Univ Pune, Dept Math, Pune 411007, Maharashtra, India
关键词
independent domination number; (d; k)-domination number; hypercubes;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the (d,n)-domination number, gamma(d,n) (Q(n)), the distance-d domination number gamma(d)(Q(n)) and the connected distance-d domination number gamma(c,d)(Q(n)) of n-dimensional hypercube graphs Q(n). We show that for 2 <= d <= [n/2], and n >= 4, gamma(d),(n)(Q(n)) <= 2(n-2d+2), improving the bound of Xie and Xu [19]. We also show that gamma(d)(Q(n)) <= 2(n-2d+2-r), for 2(r) - 1 <= n - 2d + 1 < 2(r+1) - 1, and gamma(c,d),(Q(n)) <= 2(n-d) for 1 <= n - d vertical bar 1 <= 3, and gamma(c,d)(Q(n)) <= 2(n -d-1) vertical bar 4, for n - d vertical bar 1 >= 4. Moreover, we give an upper bound of the independent domination number, gamma(i)(Q(n)) and the total domination number, gamma(t)(Q(n)) of Q(n). We show that gamma(i)(Q(n)) <= 2(n -k), gamma(t)(Q(n)) <= 2(n -k) for 2(k) - 1 < n < 2(k+1) - 1 and k >= 1 also we show that gamma(Q(n)) = gamma(i) (Q(n)) = 2(n -k) when n = 2(k) and k >= 3.
引用
收藏
页码:161 / 168
页数:8
相关论文
共 19 条
[1]  
Arumugam S., 1998, J INDIAN MATH SOC, V65, P31
[2]  
Berlekamp E.R., 1984, ALGEBRAIC CODING THE
[3]  
Cohen G, 1997, COVERING CODES
[4]   ERROR DETECTING AND ERROR CORRECTING CODES [J].
HAMMING, RW .
BELL SYSTEM TECHNICAL JOURNAL, 1950, 29 (02) :147-160
[5]   INDEPENDENT DOMINATION IN HYPERCUBES [J].
HARARY, F ;
LIVINGSTON, M .
APPLIED MATHEMATICS LETTERS, 1993, 6 (03) :27-28
[6]  
Jha P. K., 1990, THESIS
[7]   ANOTHER CHARACTERIZATION OF HYPERCUBES [J].
LABORDE, JM ;
HEBBARE, SPR .
DISCRETE MATHEMATICS, 1982, 39 (02) :161-166
[8]   Independent perfect domination sets in Cayley graphs [J].
Lee, J .
JOURNAL OF GRAPH THEORY, 2001, 37 (04) :213-219
[9]  
Leighton F. T., 1992, INTR PARALLEL ALGORI
[10]  
Li H., 1997, 410 LRI URA CNRS