Criticality and transient chaos in a sandpile model

被引:0
|
作者
Berndt, S
Martienssen, W
机构
[1] Physikalisches Institut der Universität Frankfurt, 60054 Frankfurt
关键词
D O I
10.1103/PhysRevE.52.R5749
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We numerically investigate a coupled map lattice model which is a generalization of the critical height sandpile automaton. In the case of periodic boundary conditions we find in dependence on a threshold parameter strong evidence for a second order phase transition between states of different spatial order. In the disordered phase the spatial structure is irregular with long range linearly decaying correlations. In the ordered phase dynamics is dominated by a few coexisting periodic attractors whose basins of attraction become infinitely small at the critical point. At this point transient lengths diverge and the transients are chaotic. With open boundary conditions the system exhibits self-organized criticality, i.e., adjusts itself to the vicinity of this critical point.
引用
收藏
页码:R5749 / R5752
页数:4
相关论文
共 50 条
  • [1] Self-Organized Criticality Theory Model of Thermal Sandpile
    Peng Xiao-Dong
    Qu Hong-Peng
    Xu Jian-Qiang
    Han Zui-Jiao
    CHINESE PHYSICS LETTERS, 2015, 32 (09)
  • [2] Crossover to self-organized criticality in an inertial sandpile model
    Head, DA
    Rodgers, GJ
    PHYSICAL REVIEW E, 1997, 55 (03): : 2573 - 2579
  • [3] Self-Organized Criticality Theory Model of Thermal Sandpile
    彭晓东
    曲洪鹏
    许健强
    韩最蛟
    Chinese Physics Letters, 2015, 32 (09) : 83 - 87
  • [4] Self-Organized Criticality Theory Model of Thermal Sandpile
    彭晓东
    曲洪鹏
    许健强
    韩最蛟
    Chinese Physics Letters, 2015, (09) : 83 - 87
  • [5] SELF-ORGANIZED CRITICALITY IN A SANDPILE MODEL WITH THRESHOLD DISSIPATION
    ALI, AA
    PHYSICAL REVIEW E, 1995, 52 (05) : R4595 - R4598
  • [6] CHAOS IN SANDPILE MODELS
    Moghimi-Araghi, Saman
    Mollabashi, Ali
    MODERN PHYSICS LETTERS B, 2011, 25 (08): : 569 - 579
  • [7] Measures for transient configurations of the sandpile-model
    Schulz, Matthias
    CELLULAR AUTOMATA, PROCEEDINGS, 2006, 4173 : 238 - 247
  • [8] GENERALIZED SANDPILE MODEL AND THE CHARACTERIZATION OF THE EXISTENCE OF SELF-ORGANIZED CRITICALITY
    CHAU, HF
    CHENG, KS
    PHYSICAL REVIEW A, 1991, 44 (10) : 6233 - 6240
  • [9] Intermittent criticality in the long-range connective sandpile (LRCS) model
    Chen, Chien-chih
    Lee, Ya-Ting
    Chiao, Ling-Yun
    PHYSICS LETTERS A, 2008, 372 (24) : 4340 - 4343
  • [10] Orders of Transient Configurations of the Abelian Sandpile-Model
    Schulz, Matthias
    JOURNAL OF CELLULAR AUTOMATA, 2008, 3 (02) : 81 - 92