EXISTENCE AND UNIQUENESS OF A SHARP TRAVELING-WAVE IN DEGENERATE NONLINEAR DIFFUSION FISHER-KPP EQUATIONS

被引:77
作者
SANCHEZGARDUNO, F [1 ]
MAINI, PK [1 ]
机构
[1] NATL AUTONOMOUS UNIV MEXICO,FAC CIENCIAS,DEPT MATEMAT,MEXICO CITY 04510,DF,MEXICO
关键词
TRAVELING WAVES; NONLINEAR DIFFUSION EQUATIONS; SHARP SOLUTIONS; WAVESPEED; DEGENERATE DIFFUSION;
D O I
10.1007/BF00160178
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we use a dynamical systems approach to prove the existence of a unique critical value c* of the speed c for which the degenerate density-dependent diffusion equation u(t)=[D(u)u(x)](x)+g(u) has: 1. no travelling wave solutions for 0<c<c*, 2. a travelling wave solution u(x,t)= phi(x-c*t) of sharp type satisfying phi(-infinity)=1, phi(tau)=0 For All tau greater than or equal to tau*; phi'(tau*(-))=-c*/D'(0), phi'(tau*(+))=0 and 3. a continuum of travelling wave solutions of monotone decreasing front type for each c>c*. These fronts satisfy the boundary conditions phi(-infinity)=1, phi'(-infinity)=phi(+infinity)=phi'(+infinity)=0. We illustrate our analytical results with some numerical solutions.
引用
收藏
页码:163 / 192
页数:30
相关论文
共 31 条