ENTROPY PAIRS FOR A MEASURE

被引:51
作者
BLANCHARD, F
HOST, B
MAASS, A
MARTINEZ, S
RUDOLPH, DJ
机构
[1] LAB MATH DISCRETES,CNRS,F-13288 MARSEILLE 09,FRANCE
[2] UNIV AIX MARSEILLE 2,F-13288 MARSEILLE 09,FRANCE
[3] UNIV CHILE,DEPT INGN MATEMAT,SANTIAGO,CHILE
[4] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
关键词
D O I
10.1017/S0143385700008579
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define entropy pairs for an invariant measure mu on a topological dynamical system (X, T), and show they allow one to construct the maximal topological factor with entropy O for mu. Then we prove that for any mu, a mu-entropy pair is always topologically so, and the reverse is true when (X, T) is uniquely ergodic.
引用
收藏
页码:621 / 632
页数:12
相关论文
共 8 条
[1]   A DISJOINTNESS THEOREM INVOLVING TOPOLOGICAL-ENTROPY [J].
BLANCHARD, F .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1993, 121 (04) :465-478
[2]   ZERO ENTROPY FACTORS OF TOPOLOGICAL FLOWS [J].
BLANCHARD, F ;
LACROIX, Y .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (03) :985-992
[3]  
BURTON R, UNPUB ISOMORPHISM ER
[4]  
DENKER M, 1975, SPRINGER LECTURE NOT, V527
[5]  
GLASNER E, IN PRESS B SOC MATH
[6]   APPLICATION OF ERGODIC THEORY TO PROBABILITY THEORY [J].
ORNSTEIN, DS .
ANNALS OF PROBABILITY, 1973, 1 (01) :43-65
[7]  
Rudolph D., 1990, FUNDAMENTALS MEASURA
[8]   CLASS OF SYSTEMS FOR WHICH PINSKER CONJECTURE IS TRUE [J].
THOUVENOT, JP .
ISRAEL JOURNAL OF MATHEMATICS, 1975, 21 (2-3) :208-214