Cell type-specific modulation of cell growth by transforming growth factor beta 1 does not correlate with mitogen-activated protein kinase activation

被引:41
作者
Chatani, Y [1 ]
Tanimura, S [1 ]
Miyoshi, N [1 ]
Hattori, A [1 ]
Sato, M [1 ]
Kohno, M [1 ]
机构
[1] GIFU PHARMACEUT UNIV,DEPT BIOL,GIFU 502,JAPAN
关键词
D O I
10.1074/jbc.270.51.30686
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transforming growth factor beta 1 (TGF-beta 1) is a multifunctional cytokine that positively or negatively regulates the proliferation of various types of cells. In this study we have examined whether or not the activation of the mitogen-activated protein (MAP) kinases is involved in the transduction of cell growth modulation signals of TGF-beta 1, as MAP kinase activity is known to be closely associated with cell cycle progression. Although TGF-beta 1 stimulated the growth of quiescent Balb 3T3 and Swiss 3T3 cells, it failed to detectably stimulate the tyrosine phosphorylation and activation of the 41- and 43-kDa MAP kinases at any time point up to the reinitiation of DNA replication. TGF-beta 1 also failed to stimulate the expression of the c-fos gene. Furthermore, TGF-beta 1 synergistically enhanced the mitogenic action of epidermal growth factor (EGF) without affecting EGF-induced MAP kinase activation in these fibroblasts, and it inhibited the EGF-stimulated proliferation of mouse keratinocytes (PAM212) without inhibiting EGF-induced MAP kinase activation. Thus, the ability of TGF-beta 1 to modulate cell proliferation is apparently not associated with the activation of MAP kinases. In this respect, TGF-beta 1 is clearly distinct from the majority, if not all, of peptide growth factors, such as platelet-derived growth factor and EGF, whose ability to modulate cell proliferation is closely associated with the activation of MAP kinases. These results also suggest that the activation of MAP kinases is not an absolute requirement for growth factor-stimulated mitogenesis.
引用
收藏
页码:30686 / 30692
页数:7
相关论文
共 64 条
[1]  
AHN NG, 1991, J BIOL CHEM, V266, P4220
[2]  
ALALAWI N, 1995, MOL CELL BIOL, V15, P1162
[3]  
ALEXANDROW MG, 1995, CANCER RES, V55, P1452
[4]   REQUIREMENT FOR INTEGRATION OF SIGNALS FROM 2 DISTINCT PHOSPHORYLATION PATHWAYS FOR ACTIVATION OF MAP KINASE [J].
ANDERSON, NG ;
MALLER, JL ;
TONKS, NK ;
STURGILL, TW .
NATURE, 1990, 343 (6259) :651-653
[5]   TGF-BETA INDUCES BIMODAL PROLIFERATION OF CONNECTIVE-TISSUE CELLS VIA COMPLEX CONTROL OF AN AUTOCRINE PDGF LOOP [J].
BATTEGAY, EJ ;
RAINES, EW ;
SEIFERT, RA ;
BOWENPOPE, DF ;
ROSS, R .
CELL, 1990, 63 (03) :515-524
[6]   SIGNAL-TRANSDUCTION VIA THE MAP KINASES - PROCEED AT YOUR OWN RSK [J].
BLENIS, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (13) :5889-5892
[7]  
CHATANI Y, 1992, J BIOL CHEM, V267, P9911
[8]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[9]   HOW MAP KINASES ARE REGULATED [J].
COBB, MH ;
GOLDSMITH, EJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (25) :14843-14846
[10]   ACTIVATION OF MAP KINASE KINASE IS NECESSARY AND SUFFICIENT FOR PC12 DIFFERENTIATION AND FOR TRANSFORMATION OF NIH 3T3 CELLS [J].
COWLEY, S ;
PATERSON, H ;
KEMP, P ;
MARSHALL, CJ .
CELL, 1994, 77 (06) :841-852