Antimicrobial action mechanism of flavonoids from Dorstenia species

被引:96
作者
Dzoyem, Jean Paul [1 ,2 ]
Hamamoto, Hiroshi [2 ]
Ngameni, Barthelemy [3 ]
Ngadjui, Bonaventure Tchaleu [3 ]
Sekimizu, Kazuhisa [2 ]
机构
[1] Univ Dschang, Dept Biochem, Fac Sci, Dschang, Cameroon
[2] Univ Tokyo, Grad Sch Pharmaceut Sci, Lab Microbiol, Tokyo, Japan
[3] Univ Yaounde I, Dept Organ Chem, Fac Sci, Yaounde, Cameroon
关键词
Antimicrobial; flavonoids; membrane potential; macromolecules synthesis; bactericidal/bacteriolysis;
D O I
10.5582/ddt.2013.v7.2.66
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Naturally occurring flavonoids have been reported to possess antimicrobial activity against a wide range of pathogens. However, the antimicrobial action mechanism of these compounds has not yet been elucidated. This study investigated the mechanism underlying the antibacterial activity of four flavonoids: 6,8-diprenyleriodictyol (1), isobavachalcone (2), 6-prenylapigenin (3) and 4-hydroxylonchocarpin (4). In addition, the toxicity of these compounds was evaluated. Determination of the minimum inhibitory concentrations (MICs) was performed by microbroth dilution method. Radiolabeled thymidine, uridine, and methionine were used to evaluate the effect of the compounds on the biosynthesis of DNA, RNA, and proteins while the sensitive cyanine dye DiS-C3-(5) (3,3'-dipropylthiadicarbocyanine iodide) was used for the effect on membrane potential. Bactericidal/bacteriolysis activities were performed by time-kill kinetic method. In the toxicity study, the numbers of survivors was recorded after injection of compounds into the hemolymph of silkworm larvae. Compounds showed significant antibacterial activity against Staphylococcus aureus including methicillin-resistant S. aureus (MRSA) strains with MICs values ranged between 0.5-128 mu g/mL. Depolarization of membrane and inhibition of DNA, RNA, and proteins synthesis were observed in S. aureus when treated with those flavonoids. At 5-fold minimum inhibitory concentration, compounds reduced rapidly the bacterial cell density and caused lysis of S. aureus. Compounds 1, 2, and 4 did not show obvious toxic effects in silkworm larvae up to 625 mu g/g of body weight. Flavonoids from Dorstenia species, 6,8-diprenyleriodictyol, isobavachalcone, and 4-hydroxylonchocarpin are bactericidal compounds. They cause damage of cell membrane, leading to the inhibition of macromolecular synthesis. Taking into account the in vivo safety and their significant antimicrobial potency, these flavonoids are promising leads for further drug development.
引用
收藏
页码:66 / 72
页数:7
相关论文
共 37 条
[1]   Prenylated chalcones and flavones from the leaves of Dorstenia kameruniana [J].
Abegaz, BM ;
Ngadjui, BT ;
Dongo, E ;
Tamboue, H .
PHYTOCHEMISTRY, 1998, 49 (04) :1147-1150
[2]  
Adjanohoun JE, 1996, TRADITIONAL MED PHAR, P299
[3]   Structure-activity relationship of antibacterial chalcones [J].
Avila, Hugo Pereira ;
Albino Smania, Elza de Fatima ;
Delle Monache, Franco ;
Junior, Artur Smania .
BIOORGANIC & MEDICINAL CHEMISTRY, 2008, 16 (22) :9790-9794
[4]   Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains [J].
Chung, Pooi Yin ;
Navaratnam, Parasakthi ;
Chung, Lip Yong .
ANNALS OF CLINICAL MICROBIOLOGY AND ANTIMICROBIALS, 2011, 10
[5]  
CLSI, 2008, M27S3 CLSI
[6]  
*CLSI, 2009, M07A8 CLSI
[7]   Recent advances in understanding the antibacterial properties of flavonoids [J].
Cushnie, T. P. Tim ;
Lamb, Andrew J. .
INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2011, 38 (02) :99-107
[8]   Antimicrobial activity of flavonoids [J].
Cushnie, TPT ;
Lamb, AJ .
INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2005, 26 (05) :343-356
[9]   Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss [J].
Cushnie, TPT ;
Lamb, AJ .
JOURNAL OF ETHNOPHARMACOLOGY, 2005, 101 (1-3) :243-248
[10]   SIMPLE, RAPID, AND SENSITIVE METHOD FOR ESTIMATION OF DNA, RNA, AND PROTEIN-SYNTHESIS IN CARROT CELL-CULTURES [J].
FERRARI, TE ;
WIDHOLM, JM .
ANALYTICAL BIOCHEMISTRY, 1973, 56 (02) :346-352