POINTWISE QUASI-NEWTON METHOD FOR UNCONSTRAINED OPTIMAL-CONTROL PROBLEMS .2.

被引:5
作者
KELLEY, CT [1 ]
SACHS, EW [1 ]
WATSON, B [1 ]
机构
[1] UNIV TRIER,FACHBEREICH MATH 4,W-5500 TRIER,GERMANY
关键词
QUASI-NEWTON METHODS; OPTIMAL CONTROL;
D O I
10.1007/BF00941402
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, the necessary optimality conditions for an unconstrained optimal control problem are used to derive a quasi-Newton method where the update involves only second-order derivative terms. A pointwise update which was presented in a previous paper by the authors is changed to allow for more general second-order sufficiency conditions in the control problem. In particular, pointwise versions of the Broyden, PSB, and SR1 update are considered. A convergence rate theorem is given for the Broyden and PSB versions.
引用
收藏
页码:535 / 547
页数:13
相关论文
共 9 条
[1]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[2]  
KELLER HB, 1982, CBMS NSF REGIONAL C
[3]   QUASI-NEWTON METHODS AND UNCONSTRAINED OPTIMAL-CONTROL PROBLEMS [J].
KELLEY, CT ;
SACHS, EW .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1987, 25 (06) :1503-1516
[4]   A POINTWISE QUASI-NEWTON METHOD FOR UNCONSTRAINED OPTIMAL-CONTROL PROBLEMS [J].
KELLEY, CT ;
SACHS, EW .
NUMERISCHE MATHEMATIK, 1989, 55 (02) :159-176
[5]  
LEE EB, 1967, F OPTIMAL CONTROL TH
[6]  
MAURER H, 1981, MATH PROGRAM STUD, V14, P163, DOI 10.1007/BFb0120927
[7]  
OSBORNE MR, 1988, NEW APPROACH SYMMETR
[8]   ON LARGE-SCALE NONLINEAR LEAST-SQUARES CALCULATIONS [J].
TOINT, PL .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (03) :416-435
[9]  
WATSON B, 1990, THESIS U TRIER TRIER