BRANCHING RANDOM-WALKS ON TREES

被引:29
作者
MADRAS, N
SCHINAZI, R
机构
[1] Department of Mathematics and Statistics, York University, North York, Ont.
基金
加拿大自然科学与工程研究理事会; 巴西圣保罗研究基金会;
关键词
BRANCHING RANDOM WALK; TREE; BIASED VOTER MODEL; CONTACT PROCESS; PHASE TRANSITION;
D O I
10.1016/0304-4149(92)90038-R
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let p(x, y) be the transition probability of an isotropic random walk on a tree, where each site has d greater-than-or-equal-to 3 neighbors. We define a branching random walk by letting a particle at site x give birth to a new particle at site y at rate lambda-dp(x, y), jump to y at rate nu-dp(x, y), and die at rate delta. Let lambda-2 (respectively, mu-2) be the infimum of lambda such that the process starting with one particle has positive probability of surviving forever (respectively, of having a fixed site occupied at arbitrarily large times). We compute lambda-2 and mu-2 exactly, proving that lambda-2 < mu-2: i.e., the process has two phase transitions. We characterize lambda-2 (respectively, mu-2) in terms of the expected number of particles on the tree (respectively, at a fixed site). We also prove similar results for the biased voter model. Finally, for the contact process, branching random walk and biased voter model on the tree, we prove that the second phase transition has a discontinuity which is absent in Euclidian space.
引用
收藏
页码:255 / 267
页数:13
相关论文
共 50 条
[41]   ONE LIMIT THEOREM FOR BRANCHING RANDOM WALKS [J].
Smorodina, N. V. ;
Yarovaya, E. B. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2023, 68 (04) :630-642
[42]   Critical branching random walks with small drift [J].
Zheng, Xinghua .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (09) :1821-1836
[43]   AN APPLICATION OF THE COALESCENCE THEORY TO BRANCHING RANDOM WALKS [J].
Athreya, K. B. ;
Hong, Jyy-I .
JOURNAL OF APPLIED PROBABILITY, 2013, 50 (03) :893-899
[44]   Scaling limits of branching random walks and branching-stable processes [J].
BERTOIN, J. E. A. N. ;
YANG, H. A. I. R. U. O. .
JOURNAL OF APPLIED PROBABILITY, 2022, 59 (04) :1009-1025
[45]   Branching random walks and Minkowski sum of random walksBranching random walks...A. Asselah et al. [J].
Amine Asselah ;
Izumi Okada ;
Bruno Schapira ;
Perla Sousi .
Probability Theory and Related Fields, 2025, 191 (3) :1289-1322
[46]   One-dimensional branching random walks in a Markovian random environment [J].
Machado, FP ;
Popov, SY .
JOURNAL OF APPLIED PROBABILITY, 2000, 37 (04) :1157-1163
[47]   Branching random walks in random environment are diffusive in the regular growth phase [J].
Heil, Hadrian ;
Nakashima, Makoto ;
Yoshida, Nobuo .
ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 :1316-1340
[48]   Edgeworth expansions for profiles of lattice branching random walks [J].
Gruebel, Rudolf ;
Kabluchko, Zakhar .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04) :2103-2134
[49]   Capacity of the Range of Branching Random Walks in Low Dimensions [J].
Tianyi Bai ;
Yueyun Hu .
Proceedings of the Steklov Institute of Mathematics, 2022, 316 :26-39
[50]   Limit distributions for the number of particles in branching random walks [J].
Bulinskaya, E. Vl .
MATHEMATICAL NOTES, 2011, 90 (5-6) :824-837