A posteriori estimators for obstacle problems by the hypercircle method

被引:19
作者
Braess, Dietrich [1 ]
Hoppe, Ronald H. W. [2 ,3 ]
Schoeberl, Joachim [4 ]
机构
[1] Ruhr Univ Bochum, Inst Math, D-44801 Bochum, Germany
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
[3] Univ Augsburg, Inst Math, D-86159 Augsburg, Germany
[4] Rhein Westfal TH Aachen, Dept Math & Ctr Computat Engn Sci, D-52074 Aachen, Germany
关键词
D O I
10.1007/s00791-008-0104-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A posteriori error estimates for the obstacle problem are established in the framework of the hypercircle method. To this end, we provide a general theorem of PragerSynge type. There is nowno generic constant in the main term of the estimate. Moreover, the role of edge terms is elucidated, and the analysis also applies to other types of a posteriori error estimators for obstacle problems.
引用
收藏
页码:351 / 362
页数:12
相关论文
共 15 条
[1]  
Ainsworth M., 2000, PUR AP M-WI
[2]   Averaging techniques yield reliable a posteriori finite element error control for obstacle problems [J].
Bartels, S ;
Carstensen, C .
NUMERISCHE MATHEMATIK, 2004, 99 (02) :225-249
[3]   A posteriori error estimators for obstacle problems - another look [J].
Braess, D .
NUMERISCHE MATHEMATIK, 2005, 101 (03) :415-421
[4]  
Braess D., 2007, FINITE ELEMENTS THEO
[5]  
Braess D., ERROR REDUCTIO UNPUB
[6]  
Braess D, 2008, MATH COMPUT, V77, P651, DOI 10.1090/S0025-5718-07-02080-7
[7]   Convergence analysis of a conforming adaptive finite element method for an obstacle problem [J].
Braess, Dietrich ;
Carstensen, Carsten ;
Hoppe, Ronald H. W. .
NUMERISCHE MATHEMATIK, 2007, 107 (03) :455-471
[8]   A local a posteriori error estimator based on equilibrated fluxes [J].
Luce, R ;
Wohlmuth, BI .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (04) :1394-1414
[9]   Data oscillation and convergence of adaptive FEM [J].
Morin, P ;
Nochetto, RH ;
Siebert, KG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (02) :466-488
[10]  
NEITTAANMAKI P, 2004, RELIABLE METHODS COM