CONVERGENCE OF RITZ AND GALERKINS METHOD IN CASE OF CERTAIN NON-CONSERVATIVE SYSTEMS AND USING ADMISSIBLE COORDINATE FUNCTIONS

被引:6
|
作者
LEIPHOLZ, HH [1 ]
机构
[1] UNIV WATERLOO,DEPT CIVIL ENGN,SOLID MECH DIV,WATERLOO,ONTARIO,CANADA
关键词
D O I
10.1007/BF01176270
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
引用
收藏
页码:57 / 76
页数:20
相关论文
共 43 条
  • [1] DYNAMIC INSTABILITY OF CERTAIN CONSERVATIVE AND NON-CONSERVATIVE SYSTEMS
    DONE, GTS
    SIMPSON, A
    JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 1977, 19 (06): : 251 - 263
  • [2] RITZ METHOD IN NON-CONSERVATIVE INSTABILITY PROBLEMS - SIMPLE EXAMPLE
    BURGESS, IW
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1974, 16 (09) : 651 - 659
  • [3] Integration of certain classes of non-conservative systems
    Shamolin, MV
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (01) : 161 - 162
  • [4] New numerical method for non-conservative systems
    Taidakova, TA
    Gor'kavyi, NN
    DYNAMICS OF SMALL BODIES IN THE SOLAR SYSTEM: A MAJOR KEY TO SOLAR SYSTEM STUDIES, 1999, 522 : 393 - 398
  • [5] The inverse problem for Lagrangian systems with certain non-conservative forces
    Mestdag, T.
    Sarlet, W.
    Crampin, M.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (01) : 55 - 72
  • [6] CERTAIN PROPERTIES OF NON-CONSERVATIVE SYSTEMS OF CLASSICAL STATISTICAL MECHANICS
    PAVLOTSKII, IP
    DOKLADY AKADEMII NAUK SSSR, 1968, 182 (04): : 799 - +
  • [7] Convergence of an implicit scheme for diagonal non-conservative hyperbolic systems
    Boudjerada, Rachida
    El Hajj, Ahmad
    Oussaily, Aya
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 : S573 - S591
  • [8] ADIABATICAL THEOREM FOR A CERTAIN CLASS OF NON-CONSERVATIVE SYSTEMS IN ANALYTICAL DYNAMICS
    LOCHAK, G
    VASSALOPEREIRA, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (12): : 657 - 659
  • [9] To the stability of non-conservative systems in one degenerate case
    Agafonov, SA
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 1061 - 1064
  • [10] INFLUENCE OF MASS DISTRIBUTION ON STABILITY BEHAVIOR OF CERTAIN NON-CONSERVATIVE SYSTEMS OF RODS
    BUCHSER, B
    LEIPHOLZ, HH
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1973, 24 (02): : 255 - 269