RELATING THE BOUNDED ARITHMETIC AND POLYNOMIAL-TIME HIERARCHIES

被引:29
作者
BUSS, SR
机构
[1] Department of Mathematics, University of California, San Diego, La Jolla
基金
美国国家科学基金会;
关键词
D O I
10.1016/0168-0072(94)00057-A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The bounded arithmetic theory S-2 is finitely axiomatized if and only if the polynomial hierarchy provably collapses. If T-2(i) equals S-2(i+1) then T-2(i) is equal to S-2 and proves that the polynomial time hierarchy collapses to Sigma(i+3)(p), and, in fact, to the Boolean hierarchy over Sigma(i+2)(p) and to Sigma(i+1)(p)/poly.
引用
收藏
页码:67 / 77
页数:11
相关论文
共 14 条
[1]  
Buss S. R., 1985, THESIS PRINCETON U
[2]   AN APPLICATION OF BOOLEAN COMPLEXITY TO SEPARATION PROBLEMS IN BOUNDED ARITHMETIC [J].
BUSS, SR ;
KRAJICEK, J .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1994, 69 :1-21
[3]  
BUSS SR, 1990, CONT MATH, V106
[4]  
BUSS SR, 1994, 9TH P INT C LOG METH, P29
[5]  
CHANG R, 1990, 5TH P STRUCT COMPL T, P169
[6]  
Karp R.M., 1982, ENSEIGN MATH, V28, P191
[8]   BOUNDED ARITHMETIC AND THE POLYNOMIAL HIERARCHY [J].
KRAJICEK, J ;
PUDLAK, P ;
TAKEUTI, G .
ANNALS OF PURE AND APPLIED LOGIC, 1991, 52 (1-2) :143-153
[9]  
KRAJICEK J, 1992, MATH SCI RES I PUBLI, V21, P287
[10]  
PUDLAK P, 1992, MATH SCI RES I PUBLI, V21, P499