CYCLES AND PATHS OF MANY LENGTHS IN BIPARTITE DIGRAPHS

被引:23
作者
AMAR, D [1 ]
MANOUSSAKIS, Y [1 ]
机构
[1] UNIV PARIS 11,LRI,BAT 490,F-91405 ORSAY,FRANCE
关键词
D O I
10.1016/0095-8956(90)90081-A
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give several sufficient conditions on the half-degrees of a bipartite digraph for the existence of cycles and paths of various lengths. Some analogous results are obtained for bipartite oriented graphs and for bipartite tournaments. © 1990.
引用
收藏
页码:254 / 264
页数:11
相关论文
共 13 条
  • [1] CYCLES OF EACH LENGTH IN REGULAR TOURNAMENTS
    ALSPACH, B
    [J]. CANADIAN MATHEMATICAL BULLETIN, 1967, 10 (02): : 283 - &
  • [2] AMAR D, 1986, CYCLES PATHS MANY LE
  • [3] CYCLES IN BIPARTITE TOURNAMENTS
    BEINEKE, LW
    LITTLE, CHC
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1982, 32 (02) : 140 - 145
  • [4] BERGE C, 1983, GRAPHES HYPERGRAPHES
  • [5] CYCLES IN DIGRAPHS - A SURVEY
    BERMOND, JC
    THOMASSEN, C
    [J]. JOURNAL OF GRAPH THEORY, 1981, 5 (01) : 1 - 43
  • [6] HAGGKVIST R, 1976, J COMB THEORY B, V20, P20, DOI 10.1016/0095-8956(76)90063-0
  • [7] LONG PATHS AND CYCLES IN ORIENTED GRAPHS
    JACKSON, B
    [J]. JOURNAL OF GRAPH THEORY, 1981, 5 (02) : 145 - 157
  • [8] MANOUSSAKIS M, 1986, 303 U PAR 11 RAPP RE
  • [9] MANOUSSAKIS Y, 1987, THESIS U PARIS 11
  • [10] MITCHEM J, 1982, J GRAPH THEOR, V6, P429