THE LENGTH OF THE CONTINUED-FRACTION EXPANSION FOR A CLASS OF RATIONAL FUNCTIONS IN FQ(X)

被引:6
作者
KNOPFMACHER, A [1 ]
机构
[1] UNIV WITWATERSRAND,DEPT COMPUTAT & APPL MATH,JOHANNESBURG 2001,SOUTH AFRICA
关键词
D O I
10.1017/S001309150000496X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A study is made of the length L(h, k) of the continued fraction algorithm for h/k where h and k are co-prime polynomials in F(q)[X], F(q) a finite field. In addition we investigate the sum of the degrees of the partial quotients in this expansion for h/k, h,k in F(q)[X]. The above continued fraction is determined by means of the Euclidean algorithm for the polynomials h,k in F(q)[X].
引用
收藏
页码:7 / 17
页数:11
相关论文
共 7 条
[1]  
Dixon, 1970, J NUMBER THEORY, V2, P414, DOI 10.1016/0022-314X(70)90044-2
[2]  
Heilbronn H., 1969, NUMBER THEORY ANAL, P87
[3]  
KILLIAN H, 1983, ELEM MATH, V38, P11
[4]   THE EXACT LENGTH OF THE EUCLIDEAN ALGORITHM IN FQ[X] [J].
KNOPFMACHER, A ;
KNOPFMACHER, J .
MATHEMATIKA, 1988, 35 (70) :297-304
[5]  
PANOV AA, 1980, RUSS MATH SURV+, V35, P182, DOI 10.1070/RM1980v035n04ABEH001877
[6]   THEOREM OF HEILBRONN [J].
PORTER, JW .
MATHEMATIKA, 1975, 22 (43) :20-28
[7]  
Riordan J, 1978, INTRO COMBINATORIAL