Optimal control of film casting processes

被引:9
作者
Selvanayagam, K. [1 ]
Goetz, Thomas [2 ]
Sundar, S. [1 ]
Vetrivel, V. [1 ]
机构
[1] Indian Inst Technol, Madras 600036, Tamil Nadu, India
[2] TU Kaiserslautern, Kaiserslautern, Germany
关键词
film casting process; optimal control; first-order optimality system; adjoint system; numerical simulation; edge-bead defect; 2-PHASE STEFAN PROBLEM; NUMERICAL-SIMULATION; FREE-BOUNDARY; FLOW;
D O I
10.1002/fld.1860
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an optimal control approach for the isothermal film casting process with free surfaces described by averaged Navier-Stokes equations. We control the thickness of the film at the take-up point using the shape of the nozzle and the initial thickness. The control goal consists in finding an even thickness profile. To achieve this goal, we minimize an appropriate cost functional. The resulting minimization problem is solved numerically by a steepest descent method. The gradient of the cost functional is approximated using the adjoint variables of the problem with fixed film width. Numerical simulations show the applicability of the proposed method. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:1111 / 1124
页数:14
相关论文
共 14 条
[1]  
Abergel Frederic, 1990, Theoretical and Computational Fluid Dynamics, V1, P303, DOI [10.1007/bf00271794, DOI 10.1007/BF00271794]
[2]   ISOTHERMAL AND ANISOTHERMAL MODELS FOR CAST FILM EXTRUSION [J].
BARQ, P ;
HAUDIN, JM ;
AGASSANT, JF .
INTERNATIONAL POLYMER PROCESSING, 1992, 7 (04) :334-349
[3]  
Bird RB., 1977, DYNAMICS POLYM LIQUI
[4]   NUMERICAL-SIMULATION OF THE CAST FILM PROCESS [J].
DHALEWYU, S ;
AGASSANT, JF ;
DEMAY, Y .
POLYMER ENGINEERING AND SCIENCE, 1990, 30 (06) :335-340
[5]   NUMERICAL-SIMULATION OF COEXTRUSION AND FILM CASTING [J].
FORTIN, A ;
CARRIER, P ;
DEMAY, Y .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1995, 20 (01) :31-57
[6]   On a Lagrange-Newton method for a nonlinear parabolic boundary control problem [J].
Goldberg, H ;
Troltzsch, F .
OPTIMIZATION METHODS & SOFTWARE, 1998, 8 (3-4) :225-247
[7]   Computations of optimal controls for incompressible flows [J].
Gunzburger, MD ;
Hou, LS ;
Manservisi, S ;
Yan, Y .
INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1998, 11 (1-2) :181-191
[8]   Analysis of instantaneous control for the Burgers equation [J].
Hinze, M ;
Volkwein, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (01) :1-26
[9]   Optimal control of the free boundary in a two-phase Stefan problem with flow driven by convection [J].
Hinze, Michael ;
Ziegenbalg, Stefan .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2007, 87 (06) :430-448
[10]   Optimal control of the free boundary in a two-phase Stefan problem [J].
Hinze, Michael ;
Ziegenbalg, Stefan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (02) :657-684