A QUADRATIC MODEL FOR INVERSE PROFILING - THE ONE-DIMENSIONAL CASE

被引:36
|
作者
BRANCACCIO, A
PASCAZIO, V
PIERRI, R
机构
[1] Dipartimento di Ingegneria, Seconda Universitá di Napoli, Aversa, 81031, via Roma
[2] Istituto di Teoria e Tecnica delle Onde Elettromagnetiche, Istituto Universitario Navale, Napoli, 80133, via Acton
关键词
Inverse profiling - One dimensional - Quadratic model - Quadratic operator;
D O I
10.1163/156939395X00875
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper a quadratic model for inverse profiling is introduced. It extends the range of validity of the linear (Born) method, and at the same time allows to manage the intrinsic non linearity of the problem. The inversion of the quadratic operator is based on the minimization of a proper defined functional involving both measured data and unknowns. The adopted geometrical approach, already used in the context of phase retrieval in antennas applications, avoids the occurrence of local minima. Numerical experiments, showing the good performances of the proposed method, are also presented.
引用
收藏
页码:673 / 696
页数:24
相关论文
共 50 条
  • [31] REIMANN SOLUTION IN ONE-DIMENSIONAL INVERSE PROBLEM
    COZ, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 61 (01) : 232 - 250
  • [32] NONUNIQUENESS IN THE ONE-DIMENSIONAL INVERSE SCATTERING PROBLEM
    AKTOSUN, T
    NEWTON, RG
    INVERSE PROBLEMS, 1985, 1 (04) : 291 - 300
  • [33] INVERSE COMPTONIZATION BY ONE-DIMENSIONAL RELATIVISTIC ELECTRONS
    CANFIELD, E
    HOWARD, WM
    LIANG, EP
    ASTROPHYSICAL JOURNAL, 1987, 323 (02): : 565 - 574
  • [34] On the stochastic flow generated by the one default model in one-dimensional case
    Khatir, Yamina
    Benziadi, Fatima
    Kandouci, Abdeldjebbar
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2023, 31 (01) : 9 - 23
  • [35] Inverse scattering in one-dimensional nonconservative media
    Tuncay Aktosun
    Martin Klaus
    Cornelis van der Mee
    Integral Equations and Operator Theory, 1998, 30 : 279 - 316
  • [36] THE EFFECTS OF DISSIPATION IN ONE-DIMENSIONAL INVERSE PROBLEMS
    CORONES, JP
    DAVISON, ME
    KRUEGER, RJ
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1983, 413 : 107 - 114
  • [37] THE ONE-DIMENSIONAL INVERSE PROBLEM OF REFLECTION SEISMOLOGY
    BUBE, KP
    BURRIDGE, R
    SIAM REVIEW, 1983, 25 (04) : 497 - 559
  • [38] One-Dimensional Inverse Scattering Problem in Acoustics
    Demetrios Gerogiannis
    Sofianos Antoniou Sofianos
    Isaac Elias Lagaris
    Georgios Antomiou Evangelakis
    Brazilian Journal of Physics, 2011, 41 : 248 - 257
  • [39] Inverse scattering in one-dimensional nonconservative media
    Aktosun, T
    Klaus, M
    van der Mee, C
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1998, 30 (03) : 279 - 316
  • [40] A uniqueness result for one-dimensional inverse scattering
    Bennewitz, C.
    Brown, B. M.
    Weikard, R.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (8-9) : 941 - 948